906 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 8, AUGUST 2006

Transactions Briefs

Placement for Large-Scale Floating-Gate Field-
Programable Analog Arrays

Faik Baskaya, Sasank Reddy, Sung Kyu Lim, and
David V. Anderson

Abstract—Modern advances in reconfigurable analog technologies are al-
lowing field-programmable analog arrays (FPAAs) to dramatically grow in
size, flexibility, and usefulness. Our goal in this paper is to develop the first
placement algorithm for large-scale floating-gate-based FPA As with a focus
on the minimization of the parasitic effects on interconnects under var-
ious device-related constraints. Our FPAA clustering algorithm first groups
analog components into a set of clusters so that the total number of routing
switches used is minimized and all IO paths are balanced in terms of routing
switches used. Our FPAA placement algorithm then maps each cluster to
a computational analog block (CAB) of the target FPAA while focusing on
routing switch usage and balance again. Experimental results demonstrate
the effectiveness of our approach.

Index Terms—Analog circuit, field-programmable analog arrays
(FPAAs), placement.

[. INTRODUCTION

The ever-increasing demand in lower power systems makes analog
solutions to certain signal processing tasks a promising alternative to
digital processing. Although advances in field-programmable analog
arrays (FPAAs) allow reconfigurable low-power analog designs on
standard CMOS technology, FPAAs still have not achieved the same
success as field-programmable gate arrays (FPGAs) due to the lack of
computer-aided design (CAD) tools and the nonideal programming
technology, which contributes a large portion of parasitics into the
sensitive analog system.

This paper is focused on making our large-scale floating-gate-based
FPAA technology [1] more accessible and practical. An illustration of
a small analog circuit mapping using our FPAA is shown in Fig. 1. Our
analog CAD tool automates the placement of analog circuit blocks on a
target large-scale FPAA. Our FPAA clustering algorithm groups analog
components into a set of clusters so that the total number of routing
switches used is minimized and all IO paths are balanced in terms
of routing switches used. Our FPAA placement algorithm maps each
cluster to a computational analog block (CAB) in a target FPAA while
focusing on routing switch usage and balance again. Experimental re-
sults demonstrate the effectiveness of our approach.

A floating-gate element is a polysilicon layer with no contacts to
other layers; this polysilicon layer can be the gate of a MOSFET and
can be capacitively connected to other layers and can maintain a perma-
nent charge as an analog memory cell. The charge on the floating gate
is modified through a combination of hot-electron injection and elec-
tron tunneling [2]. Floating-gate transistors function in two ways in the

Manuscript received April 1, 2005; revised December 26, 2005. This work
was supported in part by the National Science Foundation under Contract CNS-
0411149.

F. Baskaya, S. K. Lim, and D. V. Anderson are with the School of Electrical
and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
USA (e-mail: baskaya@ece.gatech.edu).

S. Reddy is with the Department of Electrical Engineering, University of Cal-
ifornia, Los Angeles, CA 90095 USA.

Digital Object Identifier 10.1109/TVLSI.2006.878477

WR_OTA +
WR_OTA

HH

Fig. 1. Analog circuit and its mapping onto our floating-gate-based FPAA.

Analog Circuit Components - -
w e 40x4s H CAB | [40xas H caB
J\ x-bar x-bar
j]_ 111 111
= U] 16x16 16x16
w ~IxTxTxTx x-bar x-bar
~— XX xIx 11 11
— — X[X[x]|X u -
40x48 [H CAB 40x48 [H CAB
¢ I X[X|[X|[X - -
x-bar x-bar H
= | = m
[,4 16x16 16x16
- T X-bar x-bar
(@) (b)

Fig. 2. (a) CAB for an FPAA based on floating-gate devices. (b) Overall block
diagram for a large-scale FPAA.

FPAA: as switches that connect device pins or as configuration devices
for analog components in the CAB. Using floating-gate transistors as
switches has advantages over using a standard pFET or a transmission
gate. The switch resistance exhibits more linearity and consistency over
the operating voltage ranges [3] and can be controlled by the injection
amount, allowing building them with small aspect ratios and, therefore,
smaller sizes and larger arrays. Floating-gate switches can also serve
as transistors with fixed gate voltages acting as anything from resistors
and spreading elements to current sources.

The computational logic in the FPAA is organized in a compact CAB
that consists of op-amps, transistors, multiplier, capacitors, edge de-
tectors, and filters as illustrated in Fig. 2. CABs are tiled across the
chip in a regular mesh-type architecture with busses and local inter-
connects in between similar to the tiling in simple FPGA architectures.
The major parasitic effects on FPAA chips are due to parasitic resis-
tance and capacitance of the routing switches on FPAA interconnects.
Unlike digital circuits, these parasitics have a cumulative impact on the
performance of analog circuits. Therefore, the primary objective during
physical synthesis is to minimize the number of switches connected to
a signal path and to balance the different signal paths. Since the routing
metals have been prebuilt and the only control given is on the switches,

1063-8210/$20.00 © 2006 IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 2, 2009 at 08:00 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 8, AUGUST 2006 907

the mapping algorithm will not be affected from the changes in tech-
nology except for the necessity of updating the actual switch and wire
parasitics.

II. EXISTING WORK

There currently exist several CAD efforts for FPAAs in the literature
[4], [5]. However, these works focus only on small-scale, switch-capac-
itor-based designs. On the other hand, our floating-gate-based FPAAs
contain up to 144 (12 x 12) complex CABs, thereby necessitating a
more scalable approach to handle the complexity. In addition, the de-
vice and interconnect constraints in our floating-gate-based FPAA are
radically different from the switch-capacitor-based FPAA. Significant
work has been done on logical and physical synthesis for lookup-table
(LUT)-based FPGAs during the last 20 years [6]—[8].

The device and interconnect constraints in floating-gate-based FPAA
make traditional FPGA algorithms unapplicable. During the placement
phase, FPGA architectures often use simulated annealing or genetic
algorithms to achieve an optimal solution. Although these same ideas
can be applied to FPAA implementations, the cost functions in these
algorithms vary. Typically, FPGA and, in general, most digital inter-
faces place higher priority on reducing wire length, net density, and
overall delay. On the other hand, FPAA and analog architectures typi-
cally focus on reducing loading effects and distortions of signals.

FPGAs traditionally have a very simple interconnect network
architecture, where the vertical and horizontal channels have the
same number of routing tracks and propagate the same signal down a
pipeline. Each horizontal and vertical wire is segmented and are shared
among several interconnects. This varies quite significantly from our
FPAA, where the interconnect wires are not segmented and a single
interconnect occupies the entire vertical/horizontal highway. The
basic logic element used in FPGAs is a combination of programmable
LUTs with universal functionality and flip-flops in general, whereas
a CAB in an FPAA consists of many more various programmable
analog components with distinct functionality. In addition, there
are no sequential elements in an FPAA. Thus, behavioral as well as
physical synthesis needs entirely different approaches to handle new
cost functions under new types of device constraints. Thus, it is fairly
difficult to directly associate automation algorithms between FPGAs
and FPAAs.

III. FPAA INTERCONNECT ANALYSIS

A. Interconnect Modeling

There are three types of routing switch boxes in floating-gate-based
FPAA: local, vertical, and horizontal crossbars that establish con-
nections between components in the same CAB, CABs in the same
column, and CABs in different columns, respectively. The routing
switches in local, vertical, and horizontal crossbars are, respectively,
called local, vertical, and horizontal switches. Three types of wires are
connected through these switches to each crossbar (see Fig. 3).

* Type 1: Intra-CAB (local) wires connect components in the same
CAB using the switches in local crossbar. The parasitics of these
wires are minimal.

e Type 2: Inter-CAB/intra-column (vertical global) wires connect
components from different CABs located in the same column and
extend all the way from top to bottom.

* Type 3: Inter-column (horizontal global) wires connect compo-
nents from different CABs located in different columns and ex-
tend all the way from left to right. The parasitics of these wires
are maximal.

Local (type 1) wires are alternatively called i-nets in this paper,

whereas global (types 2 and 3) wires are called x-nets. Since global
wires span the whole FPAA vertically or horizontally, each global

loc x-bar c
W
“—
o P
olypgt (¢}
O A C\
HAR ° B
C
v <« hor x-bar
®
Q type2 0
x b o type3|
3]
>
Ch
R R R R
type1 type2
Cw CI Cw Cw Cv Cw
R R R R
type3

c, ¥c, ¥c, ¥c, Tc,

v

Fig. 3. Routing resource for a 2 x 2 FPAA that consists of local, vertical, and
horizontal crossbars. Three types of interconnects (1: intra-CAB; 2: inter-CAB/
intra-column; and 3: inter-column) are also shown.

wire can only accommodate a single interconnect. In addition, once
a net is occupying a wire, the sum of the resistance and capacitance
of all routing switches in this wire contributes to the parasitics of the
interconnect. We model the resistance of switches that are turned on
(= R) and sum of all of the off switch capacitances on a horizontal
local wire (= C',), vertical local wire (= C'), horizontal global wire
(= C), and vertical global wire (= C). We assume that C',, < C.,
Cw < Cp,and (7 < C,. In case the interconnect contains more than
two components (= multi-pin net), each source-to-sink connection
can be individually modeled. Zero-value time constant analysis [9] on
the interconnect type 1 in Fig. 3 yields w ~ 1/R(2C., + C7) for the
dominant pole only. The equation shows that each switch contributes
a pole when added into the circuit path and has a negative impact on
the bandwidth.

B. Path Delay Balance

In digital circuits, unequal delay in parallel signal paths results in
reduced clock speed. In analog circuits, however, such a situation
threatens signal integrity when signals from unbalanced paths (=
unequal numbered switches on these paths) are combined together.
Therefore, path length balance is critical in FPAA physical synthesis.
Our strategy is to identify the groups of related paths that need to be
balanced based on their initial path lengths, i.e., before the routing
switches are inserted. These groups are determined using the k-means
clustering method [10]. We then attempt to insert an equal amount of
routing switches along the paths in the same group as much as possible
to balance their delay.

IV. FPAA CLUSTERING ALGORITHM

A. Problem Formulation

The goal of FPAA clustering is to pack the analog circuit compo-
nents that are closely connected to each other into the same CABs. This
process is constrained by device, internal net (i-net), and external net
(x-net) limitations. The objective is to maximize the device and i-net (=
local wire) utilization while minimizing the x-net (= vertical and hor-
izontal global wires) usage in order to make room for the subsequent
placement phase. Balancing the delay of parallel paths by assigning
fewer switches to the longer paths is another objective. As mentioned

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 2, 2009 at 08:00 from IEEE Xplore. Restrictions apply.

908 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 8, AUGUST 2006

TABLE I
BENCHMARK CIRCUITS

ckt | CAB #cells #nets | ckt | CAB #cells #nets
cl | fpaal 10 16 | cll | fpaa2 217 245
c3 | fpaal 20 27 | c13 | fpaa2 326 356
¢S | fpaa2 44 55 | cl15 | fpaa3 395 482
c7 | fpaa2 110 147 | cl17 | fpaa3 438 484
c9 | fpaa2 118 143 | c19 | fpaa3 534 602

in Section III-A, each wire is not segmented and can only be used by a
single net (either two-pin or multiple-pin). Thus, care must be taken to
balance the usage of these wires to prevent unroutable solutions.

B. Clustering Algorithm

Our constructive CAB clustering algorithm consists of three steps: 1)
preclustering of the user defined groups; 2) cell ordering for clustering
priority; and 3) CAB ranking and selection. In a nutshell, we visit the
cells in a certain order and search for the best possible CAB to cluster
with while monitoring various constraints. We temporarily allow x-net
constraint violation and correct it during the later stage of the clustering
process.

First, the cells specified by the user constraints are clustered into
groups that have priority with respect to number of cells within. Then
comes the vector matrix multiplier (VM) and, finally, the remaining
cells in the order determined as follows. In net-driven ordering, the
cells are ordered according to the modified hyper edge coarsening
(MHEC) scheme [11]. MHEC is used in circuit partitioning for
cutsize minimization. In this scheme, we visit the nets (hyperedges)
in ascending order of their sizes, where the size of a net is the number
of cells it connects. From each net we visit, we pick a random cell.
The motivation is to break as few nets as possible by focusing on
smaller nets first, so that the total number of intercluster connections
is naturally minimized. In path-driven ordering, we perform static
timing analysis to compute the timing slack values for all cells to be
ordered. We then sort the cells in ascending order of timing slack
values. This method encourages timing critical nodes to be clustered
together during the early stage of clustering, thereby reducing the
longest path delay (= maximum number of switches used among all
paths), which has been shown to have a nontrivial impact on path delay
balancing. In our hybrid net/path-driven ordering approach, we use
MHEC to visit nets and order the cells in each net using timing slack
values. These approaches are compared against a random ordering
scheme in Section VI.

For each cell in the sorted order, every CAB is scanned for avail-
ability and then ranked. Ranking is done based on the improvement of
occupancy of the CAB, increase in the number of i-nets, and decrease
in the number of x-nets when the given cell is assigned to the CAB of
interest. Then, the CAB with the highest rank is selected for merging.
In case there exists no feasible CAB for a given cell, we allow the x-net
constraint to be violated and attempt to fix it using our x-net_reduction
method. The objective of this algorithm is to reduce the number of in-
tercluster connection (= x-net) for a given cluster to an acceptable level
L, where L could be equal to the x-net limit or even lower. For a given
cluster C, a neighboring cell n is called feasible if: 1) n is not clustered
yet; 2) there is a net that connects any cell in C' and n; and 3) merging
C and n does not violate the device and i-net constraints. For each fea-
sible neighbor n for a given cluster C', we compute pkey that denotes
the number of nets incident on ¢ that do not connect to C. Then, the
neighbor with the minimum pkey is selected for merging with C'. If
there are several neighbors with the same minimum pkey value, then
we break the tie using another value named skey. The skey of a cell
n is the number of nets that connect C' and n together. In case there

TABLE II
FPAA ARCHITECTURES

comp fpaal fpaa2 fpaa3
dimension 4x4 8% 8 12 x 12
cab0 4 16 36
cabl 12 48 108
local wires 16 x 10 64 x 10 144 x 10
vertical global wires 4x6 8 x 15 12 x 33
horizontal global wires | 4 x 8 8 x8 12 x 8

exists no more feasible neighbor or the x-net is not reduced below the
threshold value, we conclude that x-net reduction is impossible for this
cluster. We use a binary-heap-based priority queue for neighbor man-
agement. Thus, this algorithm runs in O(rlogn).

The CAB rank equation for a given CAB C' is computed as follows:

Focc
F#all

where #occ (#all) is the number of occupied (all) slots in the CAB,
« and 3 are weighting constants, Ainets(Axnets) is the change in
number of i-nets (x-nets), and #cut is the number of nets added into the
cutset by choosing this CAB for merging. The complexity of the algo-
rithm is O(m X n), where m is the total number of CABs in the target
FPAA and n is the total number of components in the given analog
circuit.

a X (Alnets — Axnets — #cut) + 3 x 1)

V. FPAA PLACEMENT ALGORITHM

A. Problem Formulation

FPAA placement is a process of performing one-to-one mapping be-
tween the set of CAB clusters and the physical CABs in the given FPAA
architecture. The main objective of the FPAA placement is to reduce
the parasitic effects of the inter-CAB interconnects and switches while
maintaining the path delay balance. We accomplish this goal by re-
ducing the total number of vertical and horizontal global switches used,
which in turn requires the minimization of the number of columns that
each x-net spans. In case an x-net spans CAB clusters in m > 1 dis-
tinct CAB columns, we need to use at least m vertical global wires and
one horizontal global wire (= type-3 wires in Fig. 3). Otherwise, we
use only a single vertical global wire (= type-2 wires in Fig. 3). In ad-
dition, the balance in terms of the total number of global switches used
in all paths is another important goal. It is also important to minimize
the longest path delay to reduce the overall latency of the mapped so-
Iution. Two types of constraints are imposed during FPAA placement:
CAB type and x-net constraints.

B. Placement Algorithm

Our FPAA placement consists of two steps: constructive placement
and stochastic refinement. We construct an initial CAB placement solu-
tion while reducing inter-CAB-column connections under various de-
vice-related constraints. This solution is then iteratively refined by a
series of moves and swaps of CABs during our simulated annealing-
based refinement.!

The goal of FPAA constructive placement is to assign CAB clus-
ters to CAB columns so that the number of intercolumn connections is
minimized. In our simple heuristic, the CAB clusters are arranged in
descending order of the number of their x-nets. The CAB columns in
the target FPAA device are arranged in ascending order of the number

1A relatively small number of CABs that need to be placed (2-60 CABs) mo-
tivated us to attempt an ILP-based approach for CAB placement. We observed,
however, that, due to the complex x-net constraint, the runtime involved was
prohibitive.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 2, 2009 at 08:00 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 8, AUGUST 2006

TABLE IIT

909

FPAA CLUSTERING RESULTS, WHERE % UTILIZATION OF CABS, INTERNAL NETS, AND EXTERNAL NETS IS SHOWN. WE ALSO REPORT THE MAXIMUM LONGEST
PATH DELAY (xlp). THE TOTAL RUNTIME FOR ALL 20 CIRCUITS IN SECONDS IS REPORTED FOR EACH ALGORITHM

random net-driven net/path-driven path-driven
ckt cab i-net x-net xlp cab i-net x-net xlp cab i-net x-net xlp cab i-net x-net xlp
cl 3333 2333 30.00 13] 3333 3333 20.00 6| 3333 3333 20.00 6| 3333 3333 20.00 6
c3 28.57 1429 2429 43 | 40.00 32.00 22.00 29 [40.00 32.00 22.00 29 | 3333 21.67 2333 30
c5 61.82 27.14 5143 61 | 54.09 28.75 40.00 69 | 61.82 30.00 48.57 69 | 5420 2625 4250 @ 61
c7 56.36 27.89 49.47 68 | 56.41 3474 42.63 60 | 56.41 3474 42.63 60 | 62.57 46.47 40.00 46
c9 61.44 22.11 53.16 99 | 61.53 3421 41.05 78 | 61.44 33.16 42.11 78 | 58.32 27.00 44.50 71
cll 67.59 2438 52.19 76 | 65.62 31.82 4242 851 65.62 31.82 4242 85| 65.62 28.48 45.76 78
cl3 77.45 3095 53.81 39 | 85.67 5421 3947 60 | 85.67 55.00 38.68 67 | 85.67 51.32 4237 67
cls 64.79 1683 63.50 342 | 67.01 2793 5517 296 | 64.80 2633 5400 263 | 64.79 25.83 5450 262
cl7 83.92 11.15 8192 34 | 83.97 40.58 52.50 34| 8395 3923 5385 20 | 8392 33.08 60.00 34
cl9 73.88 10.14 73.47 26 | 73.94 37.64 4597 28 | 73.88 34.72 48.89 35| 73.89 3556 48.06 19
ave 65.19 21.54 5541 66.7 | 67.36 37.11 4229 604 | 6728 36.89 4241 58.05] 6632 3431 43.87 56.8
time (s) 404 412 413 409
TABLE IV

SIMULATED-ANNEALING-BASED FPAA PLACEMENT RESULTS WITH VARIOUS COST FUNCTIONS. WE REPORT THE TOTAL USAGE OF HORIZONTAL GLOBAL
SWITCHES (hgsw), MAXIMUM LONGEST PATH DELAY (xlp), AND PATH-BALANCING MEAN-SQUARED ERROR (mse)

hgsw-only mse-only xIp-only hgsw + mse + xlp
ckt hgsw mse xlp | hgsw mse xlp | hgsw mse xlp | hgsw mse xIp
cl 2 0.25 6 2 0.25 6 2 0.25 6 2 0.25 6
c3 14 1014.00 125 14 1014 125 14 1014.00 125 14 1014.00 125
c5 63 1040.22 325 63 1040.22 325 63 1040.22 325 63 1040.22 325
c7 116 1358.64 252 123 19.76 220 124 339.76 206 125 19.76 220
c9 124 4692.25 270 132 1089 231 137 1089.00 231 133 1089.00 231
cll 180 36.75 341 227 0 309 211 908.75 174 194 0.00 238
cl3 224 338.00 259 | 272 10.89 291 264 28822 99 231 10.89 163
cls 507 1477.75 1142 602 8.33 1165 558 297.17 537 503 15.08 679
cl7 419 219.17 84 527 0.5 84 498 85.83 52 440 0.50 84
cl9 535 1152.89 163 623 32.67 99 633 32.67 35 548 32.67 99
ave 216.80 813.44 23840 | 258.8 183.76 220.55 | 252.00 303.42 147.45] 22240 18542 172.15
time (s) 4267 4026 4110 4736

of x-nets that are used. Since each CAB column contains only a few
CABs, itis usually not possible to assign all CABs in the same x-net. In
addition, the x-net constraint quickly becomes an issue during our con-
structive placement. Thus, we focus more on x-net management during
our constructive placement. Since the CAB clusters can be of different
types, the algorithm considers the type constraint as well. The CAB
clusters are safely placed in columns if the type restriction and the x-net
limit are satisfied. If one of the restrictions fails, than the next column
is considered. This process repeats until a feasible column is found for
a given CAB. In case there exists no feasible column for a given CAB,
we allow x-net violation and correct it during our simulated-annealing
(SA)-based refinement. This violation becomes a penalty term in our
SA cost function and is minimized along with other cost factors. The
row assignment of CABs in each CAB column is done randomly at the
end of column assignment.

SA is a widely used and well-developed stochastic placement re-
finement method and is employed as the last step of our hierarchical
placement tool. Our SA-based refinement is based on the following
cost function:

cost = a X hgsw + 8 X mse + v X xpl

@

where hgsw, mse, and xpl, respectively, denote the total number of
horizontal global switches used, the mean square error introduced
in Section III-B, and the maximum path delay computed from static
timing analysis. For each perturbation, we randomly select a CAB and
a target column and move the CAB to either an empty slot or swap
with a random CAB in the target column and evaluate the cost using
(2). In addition, the evaluation of hgswis done incrementally so that
only the change in the cost function is computed.

VI. EXPERIMENTAL RESULTS

We implemented our algorithms using C++/STL and tested on our
analog benchmark circuits shown in Table I. We map these circuits onto
three different FPAA chips shown in Table II. Our current FPAA archi-
tecture provides more local wires then global, so our physical synthesis
process focuses on reducing inter-CAB wires.

Table I1I presents the % utilization for CABs, i-nets, and x-nets. The
maximum longest path delay (xlp) is also presented in this table. For
the calculation of CAB utilization, the unused CABs are not consid-
ered. The ratio of the number of used components to all available com-
ponents in a CAB gives the CAB utilization for that CAB. Likewise,
the ratio of i-nets (x-nets) used over all available i-nets (x-nets) gives
the i-net (x-net) utilization for the CAB in consideration. The average
of CAB, i-net and x-net utilization over all used CABs give the overall
CAB, i-net and x-net % utilization.

First, the CAB utilization varies little among four different clus-
tering algorithms. This leads us to believe that the CAB utilization
is independent of the circuit component ordering and the CAB selec-
tion criteria. The CAB utilization improves as the size of the circuit
and its corresponding FPAA device increases. Second, we observe that
the net-driven method achieves the highest i-net utilization and lowest
x-net utilization. Note that 100% i-net utilization is not always possible
depending on the circuit structure and CAB component availability.
Third, path-driven clustering achieves the best results in reducing the
maximum path length. In particular, the path-driven scheme reduces the
maximum path length of the second biggest circuit (c19) significantly
compared to the other algorithm. We note that the net-driven approach
also achieves timing results that are comparable to path-driven, leading
us to believe that the minimization of x-net also has an indirect impact
on path delay minimization. Lastly, both net-driven and path-driven

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 2, 2009 at 08:00 from IEEE Xplore. Restrictions apply.

910 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 8, AUGUST 2006

methods have their own strengths: net-driven method yields better uti-
lization of resources while path-driven method results in better timing
results. In addition, the net/path-driven method achieves good tradeoff
between resource utilization and timing results.

Table IV studies the impact of various cost factors used in our
SA-based refinement. The first three algorithms take only hgsw, mse,
or xIp objective into account, whereas the forth algorithm uses a com-
bination of all three objectives and is selected as baseline. First, we
obtain 3% more hgswsaving with hgsw — onlyalgorithm compared to
the baseline. However, this saving comes with 438% and 39% increase
on mse and xIp cost. Second, the mse saving with mse — only
algorithm compared to the baseline is almost negligible while the
hgsw and xlp cost increase by 16% and 28%, respectively. Finally, the
xlp saving with xlp — only algorithm compared to the baseline is 15%
while the hgsw and mse cost increase by 13% and 64%, respectively.
These results reveal that there may be a little improvement for a certain
metric if SA focuses only on that metric. However, these individual
savings come with huge degradation on other metrics that are ignored.
Thus, the combined cost function proves to be the best approach.

VII. CONCLUSION

This paper focused on making our large-scale floating-gate-based
FPAA technology more accessible by providing the first physical syn-
thesis tool. Our analog CAD tool automates the placement of analog
circuit components on a target large-scale FPAA. Our placement algo-
rithm incorporates a performance metric that takes into account signal
degradation and circuit parasitics under various device-related con-
straints. Our experimental results demonstrated the effectiveness of our
new approaches for solving this new problem.

REFERENCES

[1] T.Hall, C. Twigg, P. Hasler, and D. Anderson, “Developing large-scale
field-programmable analog arrays,” in Proc. Parallel Distrib. Process.
Symp., 2004, pp. 26-30.

[2] P. Hasler, C. Diorio, B. A. Minch, and C. A. Mead, “Single transistor
learning synapses,” in Advances in Neural Information Processing Sys-
tems 7. Cambridge, MA: MIT Press, 1995, pp. 817-824.

[3] J. D. Gray, C. M. Twigg, D. N. Abramson, and P. Hasler, “Charac-
teristics and programming of floating-gate pFET switches in an FPAA
crossbar network,” in Proc. IEEE Int. Symp. Circuits Syst., 2005, pp.
23-26.

[4] H.Wangand S. Vrudhula, “Behavioral synthesis of field programmable
analog array circuits,” ACM Trans. Design Autom. Electron. Syst., pp.
563-604, 2002.

[5] S. Ganesan and R. Vemuri, “Behavioral partitioning in the synthesis
of mixed analog-digital systems,” in Proc. ACM Design Autom. Conf.,
2001, pp. 133-138.

[6] J. Cong and Y. Ding, “Flowmap: An optimal technology mapping al-
gorithm for delay optimization in lookup-table based FPGA designs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., pp. 1-12,
1994.

[7]1 V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” in Proc. Int. Symp. Field Programmable Gate
Arrays, 1997, pp. 213-222.

[8] M. Pedram, B. Nobandegani, and B. Preas, “Design and analysis of seg-
mented routing channels for row-based FPGAs,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., pp. 1266—-1274, 1994.

[9] B. Cochrun and A. Grabel, “A method for the determination of the
transfer function of the electronic circuits,” IEEE Trans. Circuit
Theory, vol. CT-20, no. 1, pp. 16-20, Jan. 1973.

[10] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun., vol. COM-28, no. 1, pp. 84-95, Jan.
1980.

[11] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hy-
pergraph partitioning: Application in VLSI domain,” in Proc. ACM De-
sign Autom. Conf., 1997, pp. 526-529.

Virtual Memory Window for Application-Specific
Reconfigurable Coprocessors

Miljan Vuleti¢, Laura Pozzi, and Paolo Ienne

Abstract— The complexity of hardware/software (HW/SW) interfacing
and the lack of portability across different platforms, restrain the wide-
spread use of reconfigurable accelerators and limit the designer produc-
tivity. Furthermore, communication between SW and HW parts of code-
signed applications are typically exposed to SW programmers and HW de-
signers. In this work, we introduce a virtualization layer that allows recon-
figurable application-specific coprocessors to access the user-space virtual
memory and share the memory address space with user applications. The
layer, consisting of an operating system (OS) extension and a HW compo-
nent, shifts the burden of moving data between processor and coprocessor
from the programmer to the OS, lowers the complexity of interfacing, and
hides physical details of the system. Not only does the virtualization layer
enhance programming abstraction and portability, but it also performs
runtime optimizations: by predicting future memory accesses and specu-
latively prefetching data, the virtualization layer improves the coprocessor
execution—applications achieve better performance without any user in-
tervention. We use two different reconfigurable system-on-chip (SoC) run-
ning Linux and codesigned applications to prove the viability of our con-
cept. The applications run faster than their SW versions, and the overhead
due to the virtualisation is limited. Dynamic prefetching in the virtualisa-
tion layer further reduces the abstraction overhead.

Index Terms—Codesign, coprocessors, dynamic prefetching, operating
system (OS), reconfigurable computing.

[. INTRODUCTION

Blending two computational paradigms (temporal computation on
standard processors and spatial computation in reconfigurable hard-
ware) supported by reconfigurable system-on-chip (SoC) devices [1],
[2] is a well-known way to increase performance: critical code sections
or entire software functions are mapped to reconfigurable hardware
accelerators. When it comes to interfacing the application-specific
coprocessors with the rest of the reconfigurable SoC: 1) programmers
must be aware of data partitioning and memory transfers and 2) hard-
ware designers have to account for different architectural details of
the host platform. The memory transfers can particularly burden the
programmer, if shared memory accessible by processor and field-
programmable gate array (FPGA) is smaller than a dataset to process.

We introduce an abstraction layer for virtualization of hardware/
software (HW/SW) interfacing. A lightweight platform-specific hard-
ware and an operating system (OS) extension reduce the burden of
SW programmers and HW designers: 1) programmers can write soft-
ware that invokes reconfigurable coprocessors as if they were soft-
ware functions—there is no need for explicit data transfers, passing
memory pointers is just enough and 2) designers can write coproces-
sors that access the user virtual memory through a virtual memory
window—there are neither physical constraints on addressing nor on
the interface memory size. Our contribution shifts the burden of moving
data between processor and coprocessor from the programmer to the
0OS. Codesigned applications become fully platform independent with
only a limited penalty.

Manuscript received April 23, 2004; revised January 23, 2006.

M. Vuleti and P. Ienne are with the Ecole Polytechnique Fédérale de Lau-
sanne (EPFL), School of Computer and Communication Sciences, Lausanne
CH-1015, Switzerland (e-mail: miljan.vuletic @epfl.ch; paolo.ienne @epfl.ch).

L. Pozzi was with the Ecole Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences, Lausanne CH-1015,
Switzerland. She is now with the Faculty of Informatics, University of Lugano,
Lugano CH-6900, Switzerland (e-mail: laura.pozzi @unisi.ch).

Digital Object Identifier 10.1109/TVLSI.2006.878481

1063-8210/$20.00 © 2006 IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 2, 2009 at 08:00 from IEEE Xplore. Restrictions apply.

