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Abstract

As mobile phones advance in functionality and capa-
bility, they are increasingly being used as instruments
for personal monitoring. Applications are being de-
veloped that take advantage of the sensing capabilities
of mobile phones - many have accelerometers, loca-
tion capabilities, imagers, and microphones - to infer
contextual information. We focus on one type of con-
text, the transportation mode of an individual, with the
goal of creating a convenient (no requirement to place
sensors externally or have specific position/orientation
settings) classification system that uses a mobile phone
with a GPS receiver and an accelerometer sensor to de-
termine if an individual is stationary, walking, running,
biking, or in motorized transport. The target applica-
tion for this transportation mode inference involves as-
sessing the hazard exposure and environmental impact
of an individual’s travel patterns. Our prototype clas-
sification system consisting of a decision tree followed
by a first-order Hidden Markov Model achieves the ap-
plication requirement of having accuracy level greater
than 90% when testing with our dataset consisting of
twenty hours of data collected across six individuals.

1. Introduction

Mobile phones are truly ubiquitous. They are one of
the few devices, which have computation, sensing, and
communication capabilities, that are carried by people
throughout the day. These devices are being integrated
with sensors that capture location and measure accelera-
tion. We are interested in using mobile phones to deter-
mine the transportation mode of an individual - whether
the user is stationary, walking, running, biking or in mo-
torized transport1. Demand for this fine-grained infer-
ence exists: our Personal Environmental Impact Report
(PEIR) project uses transportation mode tagged loca-
tion traces as input into models of hazard exposure and
environmental impact [1].

This paper outlines our work in creating a trans-
portation mode classification system that runs on a mo-
bile phone equipped with a GPS receiver and a 3-
axis accelerometer. Our initial results, using a dataset
of twenty hours of data from six individuals, shows
promise in creating a convenient (single sensing unit,
can be on or inside of clothes, no orientation/position
requirement), reliable (greater than 90% accurate) clas-
sification system for these states. The system classi-
fies one second of data by using the GPS receiver speed
value and energy, variance, and sum of FFT coefficients
between 1-5Hz from the accelerometer and employs a
decision tree followed by a first-order discrete Hidden
Markov Model. Our system could work on any platform
that contains a GPS receiver and a 3-axis accelerometer
but our design is informed by plausible sensors and po-
sition/orientation requirements of mobile phones.

2. Related Work

Existing work related to transportation mode classi-
fication has focused on using location information cou-
pled with external data (e.g. road/transportation in-
frastructure, user patterns, GSM cell tower/WiFi ac-
cess point density) [2, 3, 4, 5, 6], using accelerometer
placed in one or more (up to twelve) positions on the
body [7, 8, 9, 10], or using a single sensing unit but with
multiple modalities (accelerometer, audio, barometric
pressure) [11, 12]. Table 1 shows recent work that has
been specifically implemented on mobile phones.

Existing systems do not meet all of our design goals.
They are either not convenient (require specific posi-
tion/orientation of sensors, have to be worn externally),
rely on additional information (learned user patterns,
land use data), or use infrastructure that is not always
readily available (dense GSM cell towers/WiFi access
points). Regardless, we use this existing work to help
determine what types of sensing modalities, features,
and techniques could be useful for our system.

1We do not distinguish between motor vehicles (motorcycle, car,
bus) here, but are exploring map-matching for this purpose.



Classes Sensor Size Accuracy
[6] Still, Walk,

Motorized
GSM 1 User, 45

Mins.
82%

[3] Still, Walk,
Motorized

GSM 3 Users,
323 Hours

85%

[5] Still, Walk,
Motorized

GSM,
WiFi

2 Users,
13 Hours

83%

[2] Walk, Mo-
torized

GPS,
GIS

1 User, 60
Days

84%

Table 1. Related Work Implemented on
Mobile Phones

3. Design Goals

The design goals for our transportation mode clas-
sifier included user convenience and meeting the accu-
racy demands for PEIR. To enable user convenience, we
required our system to have the following properties: a.)
contained in one sensing unit, b.) flexible in terms of po-
sition, orientation, c.) wearable externally or contained
in clothing, d.) able to work for a variety of users, and
e.) effective with sensors that exist on mobile phones.

The PEIR application derives statistics based on the
transportation mode inferences made for an individual,
and the allowable noise from the transportation mode
classification cannot exceed 10% (accuracy of the clas-
sifier has to be greater than 90%). By analyzing sev-
eral weeks of transportation mode activity of members
in PEIR, we have found that higher error rates compro-
mise an individual’s ability to make choices about their
daily transportation habits; in effect adding noise to the
impact/exposure estimates that is on par with “natural”
variations that they may want to study (changes in speed
or the selection of alternative routes).

4. Approach

4.1. Hardware Platform and Sensors

Since our activities are kinetic based and our sys-
tem needs to operate when worn in a variety of ways,
we employ an accelerometer and a GPS receiver as our
sensors. Specifically, we use the Nokia N95 for our data
collection, which contains a three axis accelerometer
with a sensitivity of +-2G and bandwidth of 35 Hz and
a built-in GPS receiver that can sample at 1 Hz [13].

Accelerometer and GPS information is complemen-
tary. In situations where the accelerometer output is
similar, the speed is typically different and vice versa.

When we employed just one of these sensors for classi-
fication, we obtain a drop in accuracy of 10% compared
to using both. Thus, both modalities are needed.

4.2. Feature Selection

We take a window of 1 second, with an overlap of 0.5
seconds, as our period of classification. Smaller win-
dow sizes causes classification accuracy to suffer due
to certain features (accelerometer frequencies) not be-
ing effective and larger window sizes introduces noise
since multiple activities could exist.

Since we assume a random and possibly changing
orientation, we take the magnitude of the force vec-
tor by combining the measurements from the all 3 axis
as the basis for our accelerometer features. We evalu-
ated various features including the mean, variance, en-
ergy, and several banks of filters (ranging from 0.5-
10Hz with different divisions) based on magnitude of
the accelerometer along with the speed of the GPS re-
ceiver [7, 9]. We concentrated on frequencies between
0.5-10Hz for the accelerometer since previous work in
biomechanics indicates this range is appropriate to de-
tect pedestrian motion [14]. In terms of speed, we use
the value obtained from the GPS receiver when possi-
ble, which is more accurate than calculating speed from
location points.

We selected variance, energy, sum of FFT coeffi-
cients between 1-5 Hz from the accelerometer and the
speed from the GPS receiver as our feature set using
correlation based feature selection (CFS). CFS employs
a correlation measure to evaluate the goodness of fea-
ture subsets and is based on the idea that a good fea-
ture subset contains features highly correlated to a class,
yet uncorrelated with each other [15]. Alternative ap-
proaches exist - a weighted scheme based on cost of
obtaining features or a tiered setup where one feature’s
value affects which other features to obtain could be im-
plemented. We leave this as future work (Section 6).

4.3. Data Collection

The data set used for training/testing our classifiers
was obtained by asking six individuals, three male and
three female between the ages of 20-28, to gather eight
minutes of data while outside for each of the five trans-
portation modes. The volunteers performed the activ-
ities with five phones attached simultaneously - posi-
tioned on the waist, chest, hand, pocket, and in a bag.
Orientation and attachment procedures were decided by
the individual. Instructions were given on the sequence
of activities to perform, and an external entity captured
the ground truth labels. The total amount of data col-



lected across all six individuals was twenty hours. Note
that we required individuals to traverse both typical
street and highway roads, while minimizing idling, for
the motorized transport case.

5. Results

5.1. Comparing Classifiers

To determine which classification system is the most
accurate, we compared: a.) instance classifiers such
as K-Nearest Neighbor (kNN), Naive Bayes (NB),
C4.5 Decision Trees (DT), and Support Vector Ma-
chines (SVM), b.) continuous Hidden Markov Model
(CHMM), and c.) two-stage system involving a DT and
a discrete Hidden Markov Model (DHMM).

To train/test our classifiers, we used the data set de-
scribed in Section 4.3 and employed 10-fold cross vali-
dation where each fold contained equal amounts of con-
tinuous segments from each activity. The Weka toolkit
and custom HMM implementations were used for eval-
uation purposes [16], and the final classification sys-
tem is implemented directly on the mobile phone us-
ing Python. The classification system on the phone
uses on average 430 mW of power which translates to
roughly 8.15 hours of outdoor operation on the phone’s
950 mAh battery. We discuss methods to improve the
energy efficiency of our system in Section 6.

5.1.1. Parameters and Specification

In the kNN model, the 12 nearest neighbors were cho-
sen based on comparing the accuracy of various “k” val-
ues using cross validation. The SVM used a linear basis
function for the hyperplanes. A DT consisting of 21
nodes and a depth of 5 levels was employed by employ-
ing reduced error-pruning to avoid over-fitting [16].

The CHMM has five hidden states corresponding to
the transportation modes and the output symbols are
the accelerometer and GPS receiver features modeled
as independent Gaussian distributions. The two-stage
classifier is a DT followed up by a DHMM where the
DT directly uses the raw features and the DHMM is
trained by the class posterior probabilities of the DT.
Thus, the DHMM output symbols are the DT classifica-
tions and the hidden states are the transportation modes.
We set the state transition probabilities for the HMMs
to reflect which transitions are rare and which would be
more common. A similar two-stage approach was used
by [12], but we explore a smaller features space (4 vs
50) and DTs instead of decision stumps, due to higher
classification accuracy, for the initial stage.

5.1.2. Classification Accuracy

The accuracy (percentage of correctly classified states)
of each type of classifier is shown in Table 2. The two-
stage system consisting of the DT and the DHMM was
the most accurate (greater than 98%) which is plausi-
ble since the DT is tuned to differentiate between the
boundaries of transportation modes and the DHMM
eliminates noise based on temporal knowledge of the
previous transportation mode and the likelihood of tran-
sitioning into the next mode.

Still Walk Run Bike Motor All
NB 96.0 87.1 98.4 61.2 93.6 87.2
DT 98.2 96.2 98.6 91.2 94.3 95.7
kNN 97.5 95.2 98.4 91.0 91.2 94.7
SVM 97.8 95.6 98.2 86.9 88.4 93.4
CHMM 96.2 96.1 98.4 89.4 91.7 94.4
DT-DHMM 98.2 99.5 99.4 98.3 98.7 98.8

Table 2. Accuracy Results for Classifiers

5.2. Device Position Variation

Given our goal of user convenience, we investi-
gated how phone placement affects transportation mode
recognition accuracy [7, 11]. For testing purposes, we
created a general DT trained on data from all five posi-
tions (arm, bag, chest, hand, and pocket) and then indi-
vidual DTs that trained on data from specific positions.
The results, shown in Table 3, indicate that the general
DT is on par with position specific ones (average de-
crease of 1.2% in accuracy).

All Positions 95.7
Arm 97.1
Bag 96.9
Chest 96.1
Hand 96.2
Pocket 98.0

Table 3. Phone Position and Accuracy

Also, our analysis shows that user input to filter pos-
sible positions can help improve accuracy. For instance,
a classifier based on the phone being in a bag, hand, or
pocket resulted in 96.2% accuracy, chest and hand in
95.9%, and bag and hand in 96.0%.



5.3. User Variation

Another goal related to user convenience is whether
a generic classifier could be built that is effective for
new users without additional training [7, 11]. To test
the feasibility of such a system, we perform “leave one
user out” testing, where we train a DT classifier with
all but one user (five out of six) and test with the user
not in the training set. In this test, we achieved an av-
erage accuracy of 93.2% and a minimum accuracy of
87.7%. Also, we performed a test where we add more
individuals (one to six) into a training set while testing
on data from all individuals [11]. The results show that
performance increases as we introduce more individu-
als into the training set with accuracy gain stabilizing
above 95% after four users.

6. Discussion

The results derived from our user base of six in-
dividuals are very promising - we have shown that
our classification system is accurate regardless of po-
sition/orientation of sensors and that a generic classifier
is feasible. But our findings are preliminary and for our
results to be more generalizable tests need to performed
based on a larger more varied user base. We plan to
perform such a data collection as future work.

Reviewing our classification technique, there is op-
portunity to further tune model parameters. For in-
stance, we chose a frequency range of the 1-5Hz for the
FFT of the accelerometer based on optimizing to distin-
guish between all classes, but an alternative is to use the
speed feature to pick the appropriate frequency range.

Another area of further work comes in making our
classification method more energy efficient. Currently,
our system classifies every second but this might not
be totally necessary. [17] suggests that we could use
selective sampling techniques, such as ones based on
entropy, and still achieve high accuracy. Also, we could
consider the cost of capturing and processing of features
to control the tradeoff between energy and accuracy.

Finally, we want to explore whether a generic clas-
sifier is the best approach to deal with user variation.
We would like to consider alternatives such as creat-
ing several classifiers that are tuned on user-specified
parameters (e.g. likely transportation modes, physi-
cal/demographic attributes) or employing a short user-
specific training phase. These methods could lead to
better performance but have disadvantages as well such
as longer startup time and increased user involvement.

7. Conclusion

We created a transportation mode classification sys-
tem, employing a DT followed by a DHMM, that dis-
tinguishes between being stationary, walking, running,
biking, and in motorized travel using a mobile phone
equipped with a GPS receiver and an accelerometer.
We have shown that such a system can be convenient
for a user by not having strict position/orientation re-
quirements and allowing the device to be worn outside
or inside of clothes while still meeting application de-
mands, accuracy greater than 90%, based on a dataset
of twenty hours of data from six users. Our work is just
a first exploration - further testing is needed to validate
our results and there exists opportunities for expansion.
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