
Lifetrak: Music In Tune With Your Life

Sasank Reddy
NESL

Department of Electrical Engineering
University of California, Los Angeles

sasank@ee.ucla.edu

Jeff Mascia
NESL

Department of Electrical Engineering
University of California, Los Angeles

jmascia@ucla.edu

ABSTRACT
Advances in sensing technology and wider availability of net-
work services is beckoning the use of context-awareness in
ubiquitous computing applications. One region in which
these technologies can play a major role is in the area of
entertainment. Particularly, context-awareness can be used
to provide higher quality interaction between humans and
the media they are interacting with. We propose a music
player, Lifetrak, that is in tune with a person’s life by us-
ing a context-sensitive music engine to drive what music is
played. This context engine is influenced by (i) the location
of the user, (ii) the time of operation, (iii) the velocity of
the user, and (iv) urban environment information such as
traffic, weather, and sound modalities. Furthermore, we ad-
just the context engine by implementing a learning model
that is based on user feedback on whether a certain song
is appropriate for a particular context. Also, we introduce
the idea of a context equalizer that adjusts how much a cer-
tain sensing modality affects what song is chosen. Since the
music player will be implemented on a mobile device, there
is a strong focus on creating a user interface that can be
manipulated by users on the go. The goal of Lifetrak is to
liberate a user from having to consciously specify the music
that they want to play. Instead, Lifetrak intends to cre-
ate a music experience for the user that is in rhythm with
themselves and the space they reside in.

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]: Sound
and Music Computing—Systems

General Terms
Algorithms, Design, Human Factors

Keywords
Context, Entertainment, Mobile, Music, Sensors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HCM’06, October 27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-500-2/06/0010 ...$5.00.

1. INTRODUCTION
One of the most popular media for personal electronic en-

tertainment is the portable music player. These devices have
become even more popular in recent years due to introduc-
tion of convenient distribution platforms for music and also
the availability of devices that can store a large collection
of music in a package that can sit in the palm of one’s hand
[1], [2]. Most usage scenarios associated with these mobile
music devices involve creating custom playlists for different
situations. Often, these playlists correspond to situations
that can be characterized by attributes such as the user’s
mood, location, or the time of day.

Although pre-defined playlists offer a good method for or-
ganizing music, the user must manually change playlists to
match the current environment or mood. This mode of op-
eration is undesirable. [3] shows that mobile environments,
especially ones that surround an urban setting, are very dy-
namic and unpredictable so frequent changes in music is
required to match the user’s preferences. Furthermore, in-
teracting with most mobile devices is a tedious task because
user input requires explicit attention and time. This con-
cept accounts for the sustained popularity of FM radio; one
simply turns it on and listens. Radio also highlights the
problems with random music selection: songs can be out of
touch with the user’s mood or environment.

These existing challenges in the portable music space along
with user desire for dynamic music selection serve as the
motivation for Lifetrak. The essential idea behind Lifetrak
is that several sensing modalities influence the music that is
played. Essentially, Lifetrak enables a context-aware playlist
that automatically chooses music in real-time based upon
the location, the pace of movement, the current time, and
various other phenomena in the user’s environment. Fur-
thermore, Lifetrak uses a simple learning mechanism to ad-
just the ratings of songs for a particular context based on
user’s feedback when a song is being played.

An important aspect of Lifetrak that must be emphasized
is the manner by which music selection actually takes place.
The system does not autonomously analyze songs and con-
nect them to corresponding contexts. This could be a dan-
gerous practice because different users may prefer to hear
opposite types of music in the same context. Instead, Life-
trak relies on the user to tag the song database with the basic
context constructs. Lifetrak then figures out the user’s cur-
rent context and ranks the song database according to this
information. The result is a list of the most appropriate
songs for that particular situation.

The remainder of the paper is organized as follows. We

25

discuss previous work including current music players that
exist, how context awareness is currently used in ubiquitous
computing, and work related to user interfaces in a mobile
setting in Section 2. Motivational usage scenarios for Life-
trak are provided in Section 3. Section 4 contains a general
overview of the system architecture. Details regarding the
context engine and also the actual hardware used for the
player are described in Section 5. Section 6 provides infor-
mation regarding the actual music player, in terms of design,
user interface, and features. Guidelines for future work and
the conclusion for the paper are given in Sections 7 and 8.
Finally, Section 9 contains acknowledgments. Also, we have
an Appendix that has examples of various XML files used
in Lifetrak.

2. PREVIOUS WORK

2.1 Music Players
There are numerous mobile music players that currently

exist ranging from the Apple iPod to the Sony Walkman
MP3 Player [2], [4]. These players usually have the ability
to create custom playlists that the user can select. But in
terms of dynamic change, the only functionality they pro-
vide is the ability to shuffle songs in a certain playlist or
a library. In terms of music players that adjust based on
sensing, [5] tries to match a user’s speed to songs that have
corresponding similar tempos. [6] takes the tempo matching
technique further by introducing physiological data, such as
the user’s heart rate. In essence, most smart playlist music
players just do simple classification and do not utilize the
array of sensing modalities available in Lifetrak. The idea
of tagging music is nothing new. [7] and [8] talk about how
tags can be introduced for music and collaborative tagging
techniques. In fact, [9] has a web interface to upload songs
and tag them arbitrarily. Queries regarding the tags and
songs can be made using a web service interface. LastFM
enables an unlimited amount of tags while Lifetrak confines
tags to the contexts that it uses in its music selection algo-
rithm.

2.2 Context Awareness
Context-aware computing has come to the forefront in

recent years especially in the ubiquitous computing commu-
nity. But most of the work in this area leverages only a user’s
location [10], [11], what a user actually inputs or attests to
[12], or historical pattern matching techniques [13]. This
is mainly because obtaining meaningful contexts is a very
complex and hard process. There have been many studies
on what contexts should be used and how they should be
used. For instance, the idea of using social interactions and
dynamics for context generation has been suggested by [14].
Also, [3] reviews the complexity of obtaining useful contexts
in an urban environment where there are many external fac-
tors that change often and are unpredictable. Furthermore,
context classification involves many different sensing modal-
ities and typically aggregating and making a decision on
these modalities requires long wait periods and high over-
head computing capabilities. Lifetrak takes an approach
of obtaining context with sensors that will be available on
a typical mobile device in the same class as a smart-PDA
phone. This enables us to focus on fine tuning the actual
classification of the contexts and using the resources that
are available to the fullest.

2.3 Mobile User Interfaces
User interface design is very important in the realm of

mobile computing. Typically, mobile devices are fairly small
and have a small screen to interact with. Furthermore, there
is not a full keyboard or mouse setup that comes with these
devices. Taking the approach of porting existing worksta-
tion user interface environments and directly implementing
them on a mobile devices is not appropriate [15]. Further-
more, requiring both hand and visual attention to operate
a device does not fit well in most situations where mobile
devices are being used due to the fact that the environment
that the user exists in requires multitasking [3]. Finally,
[16] suggests that interfaces generally have to be made less
complicated and quick to enact. Lifetrak was designed with
having a mobile user that is engaged in multiple actions in
mind. The user interface for the music player is simple but
effective in conveying the necessary information, and inter-
action with the device is made easy by having multiple input
methods ranging from push buttons to a touch screen.

3. USAGE SCENARIOS
To illustrate the need for Lifetrak, we attempt to describe

the listening experience of a stereotypical portable music
user. The massive storage capacity of today’s portable mu-
sic players offer access to a wide variety of music on demand.
However, such extensive availability presents somewhat of a
quandary for music selection. The laborious process of nav-
igating one’s musical library for the next song to be played
can detract from the enjoyment of simply listening to music.
Furthermore, music listening is often a background process.
Users listen to their portable music players while exercising,
reading, working, driving, etc. Hence, time spent selecting
music only distracts users from the task at hand. Although
one may avoid this problem by choosing songs at random,
it depersonalizes the listening experience. We believe that
different situations elicit different emotions for different peo-
ple and consequently call for different music. Our goal for
Lifetrak is to reduce user input to the operational loop while
maximizing user situational enjoyment.

To see how this works, let’s observe a hypothetical Life-
trak user. Upon importing his or her music collection to
Lifetrak, the user labels songs, albums, or artists, with pre-
defined context tags representing the situations in which the
user desires to hear them. Admittedly tagging is not a trivial
task, but since users often commit the effort to repeatedly
make playlists, we believe they will commit to a one-time
tagging process. During daily usage, Lifetrak uses various
sensing modalities to monitor context and select songs based
upon their tags. For instance, depending on the preferences
of our hypothetical user Lifetrak may play rock music when
out for an afternoon jog, and classical music when trying to
study in a noisy cafeteria. Furthermore Lifetrak may play
calm, soothing music during stressful situations such as hur-
rying when late to class or waiting in traffic on the way to
the beach. These examples represent only a fraction of the
situations in which Lifetrak can improve the user’s daily ex-
perience.

4. SYSTEM OVERVIEW

4.1 Hardware
In order to implement Lifetrak, the Nokia 770 Internet

26

2

Song
Database

Context
Engine

Rating
Generator

Music
Player

1

Tag

3

Audio

RSS

GPS

4 5

6

ControlDisplay

7

Tag song database.

Song database
sent .

Context
information
generated.

Context sent. Playlist ranked by
context.

Music player
displays and plays

music.

Feedback of user
attributed to song.

Figure 1: Lifetrak operation overview.

Tablet was used as the hardware platform [17]. This device
provides an ideal platform for our application for a few rea-
sons. First, the Nokia 770 provides WiFi connectivity and
the ability to interface to a cellular network through the use
of a phone that is attached via Bluetooth. Also, Bluetooth
connectivity enables a Holux GPS unit to be available for use
with the device. The Nokia 770 has an internal microphone
for acquiring audio samples of the environment. The actual
device will be featured in later sections. We envision that
in the future Lifetrak can be ported to a variety of embed-
ded computing systems platforms including smart-phones,
standard MP3 players such as iPod, and even satellite radio
receivers.

4.2 Software
There are basically four main components involved in the

software architecture for Lifetrak. First is the user space
document that contains a list of all songs and the contexts
that apply for each song. Then there is the context engine
that actually gets information from various sensing modal-
ities and categorizes them into specific tags. This process
is also referred to as getting the current user context. Also,
there is the rating generator which takes the current con-
text and the user defined song database, which contains the
individual context tags for each song, and then generates
a ranked playlist. The context engine and rating generator
modules were done as Python modules due to the fact that
parsing for XML and RSS can be done easily and also access
various sensing modalities is made simple. Finally, there is
the music player which provides an interface for the end
user. Figure 1 contains all the entities in the architecture
along with the operations performed by each component.

In order to illustrate how the Lifetrak system works in
general, the typical operations will be described below.

1. Songs Tagged

One of the most important aspects of Lifetrak that
differentiates it from other context-using music play-
ers is that the system does not try to match the sensing
modalities to music by analyzing the song. Instead, it
relies on the user providing context tags that represent
when the song should be played. For instance, some
typical tags might include ”morning”, ”90024” (zip-
code), or ”sunny”. A complete list of tags that can
be applied are shown in Figure 7. The song database
is an XML file which is currently modified through a

external viewer. Future work in this area include cre-
ating a song database manager that is able to tag songs
with a graphical user interface and provide searching
capabilities.

2. Song Information Transfered

Once the song information is actually tagged appro-
priately with relevant context information, then the
information is made available to the rating generator.

3. Contexts Obtained

Context information for the user space is obtained
through various sources. A GPS unit is used to get
the location and the speed of the user. Several syndi-
cation (RSS) feeds are obtained as well to get weather
and traffic information for a particular location. Fi-
nally, a microphone is used to get the decibel level of
an environment.

4. Context Information Transfered

The context information is also sent to the rating gen-
erator for further processing. Currently the context
information is obtained at a default period of every
one minute. But this is configurable.

5. Songs Rated and Playlist Created

The rating generator takes the song database, which
has tags associated with each song corresponding to
the context that they should be played, and compares
it with the current context and then ranks the songs.
The ranking is then used to create a playlist XML file
that can be read by the music player.

The ratings are generated by comparing the current
context to each of the individual song’s context infor-
mation. Basically, if the current context matches one
of the specific tags for a song in the database, then
that song’s rating is increased by the amount specified
by that tag. The ranking is found for all songs in the
database and then the songs are played from highest
ranking to lowest. More detailed information about
the rating process can be found in Section 5.

6. Music Played and Controlled

The music player acts as the GUI for music playback.
It has several methods, soft buttons in the GUI and

27

the keypad buttons, to control the playback of the ac-
tual songs. It updates the screen with the current con-
text information and any changes made to the playlist
rankings.

7. Feedback Information Transferred

Finally, feedback is gathered from the user in order
to correct whether a certain song should be played in
a context or not. This type of feedback is obtained
by having a method to rate a song on whether one
likes the song or not and also by changing how much
each context affects the rankings as a whole. This is
referred to as the ”love it/hate it” functionality and
the context equalizer. More information about this
feedback system is given in Section 5.

5. CONTEXT
One of the key features differentiating Lifetrak from other

forms of mobile entertainment is its use of context informa-
tion to choose what songs to play for the user. The follow-
ing sections describe details about the different contexts in
terms of categories, context management scheme, and also
how user feedback is incorporated into the context engine.

5.1 Types of Context

5.1.1 Space
Space, or location, can have a significant influence on mu-

sic selection. For example, urban environments may evoke
different emotions than do rural environments. This same
contrast can exist for beaches and mountains, or other ge-
ographic characteristics. Furthermore, spatial knowledge is
necessary to retrieve remotely sensed contextual information
such as the weather. The granularity of spatial description
provided to the user is an important design choice. Space
can be represented by GPS coordinates, a polygon bound
on GPS coordinates, a zip code area, or even higher lev-
els of abstraction. After polling typical users and weighing

Figure 2: Model representation of song database
XML.

Figure 3: Context information XML schema.

the options, we concluded that high level descriptions work
better. Since general descriptions such as beach, school, or
work, are hard to verify, we chose zip codes. The user is
free to associate zip codes with personal landmarks or ge-
ographic descriptions. Lifetrak transforms the user’s GPS
location to a corresponding zip code by performing a sim-
ple closest distance approximation using data obtained from
the US Census. Although this translation is not necessarily
a one to one mapping, since zip code boundaries vary and
are not uniform, we believe this is a good enough approx-
imation in most cases. When Lifetrak is unable to receive
adequate GPS signals, it uses the last known GPS coordi-
nates to determine its zip code. Lifetrak’s space context also
includes tags for whether the user is “outside” (receiving a
GPS signal) or “inside” (not receiving a GPS signal).

5.1.2 Time
Time is another context that directly affects the music to

which people want to listen. Users often prefer listening to
certain types of music at different periods of the day. In ad-
dition, users may associate activities with certain times dur-
ing the day, such as taking a morning run, coming back from
work in the evening, or going out to lunch. Often these ac-
tivities can be described in terms of time. Lifetrak abstracts
time into predefined states for the user. First, a typical day
is divided into periods. These tags include “morning” “af-
ternoon”, “evening”, and “night”. Since a user’s perception
of these periods can vary, the time boundaries defining these
states are configurable. In addition, Lifetrak represents the
time context in terms of the day of the week. To measure
time, Lifetrak uses the internal clock of the Nokia 770 rather
than relying on GPS because GPS is not always available.
Ideally the Nokia’s clock should be periodically synchronized
to maintain long-term accuracy.

5.1.3 Kinetic
The speed of the user is another context that helps Life-

trak decide what music to play. For example, a particular
user may prefer motivational music when running for exer-
cise and peaceful music on a potentially stressful drive home
from work. Lifetrak relies on speed information provided
by the GPS unit. Although GPS accuracy is adequate for
determining different modes of movement, kinetic informa-
tion is limited by the availability of GPS signals. In the fu-

28

Love It Hate It

Song FeedbackContext Equalizer

Figure 4: User feedback operations.

ture, we envision extending Lifetrak’s capabilities to indoor
settings by adding accelerometers and gyroscopes. Kinesis
is currently divided into four distinct categories: “static”,
“walking”, “running”, and “driving”. The speed bounds on
these categories were established by analyzing a sample set
of users, but they can be customized for each individual. To
provide more consistent measurements, Lifetrak calculates
the user’s average speed over a period of time.

5.1.4 Entropic
The state of the environment is represented by the en-

tropy context. This value is obtained in two different ways.
If the user is not driving, Lifetrak calculates the mean deci-
bel level from a five second audio sample. The decibel level
gives an indication of the busyness of the user’s environment,
which Lifetrak categorizes as either “calm”, “moderate”, or
“chaotic”. For example, a user may prefer to listen to differ-
ent music when standing on a busy street corner than when
studying in a quiet library. Conversely, the microphone is
not sampled if the user is driving. Instead, Lifetrak acquires
the user’s local traffic conditions from an internet RSS feed
and categorizes them into the aforementioned tags. The
default values of the entropy categories were obtained by
analyzing decibel and traffic patterns for a city setting, but
as always they may be customized by the user.

5.1.5 Meteorological
Weather plays an important role music selection because

weather can dramatically affect one’s mood. Most com-
monly, a user may associate different music with sunny days
than with rainy days. Lifetrak pulls weather information
from RSS feeds and divides the meteorological context into
tags representing the outdoor temperature and condition.
The temperature is categorized as either “frigid”, “cold”,
“temperate”, “warm”, or “hot”. The condition is catego-
rized in typical meteorological terms as described by the
source of the RSS feed, currently Yahoo.com.

5.2 Song Rating Algorithm
The method which Lifetrak uses to determine song ratings

for a particular context is an important feature that distin-
guishes it from other music players. When music selection
utilizes sensing, often a song is chosen by analyzing patterns
in the song itself and then correlating them to the sensed
modality. However in the case of Lifetrak, the user’s per-

sonal preference is at the forefront. Lifetrak’s methodology,
in particular the song rating algorithm, is described below.

Lifetrak’s song database is an XML file containing meta-
data and context preferences for all songs in the user’s music
library. Figure 2 shows a model representation of the song
database XML file. Each song entry in the database includes
a field for every possible tag the user can attach to a song. In
our current implementation, Lifetrak provides the user with
a finite set of possible tags from which to choose; each tag
corresponds to a specific context state. Hence the available
tags for the kinetic context are “static”, “walking”, “run-
ning”, and “driving”. The user can choose to attach any
subset of these tags, and the tags associated with the other
contexts, to each song. For each tag the user attaches to a
song, Lifetrak assigns a value of one in that tag’s field. For
each tag not selected by the user, Lifetrak assigns a value
of zero in that tag’s field. Essentially the value in a tag’s
field represents the user’s desire to hear that song in the
tag’s context state. These values can later be altered by
user feedback and can be any real number from zero to one.

Lifetrak uses a similar method to store information about
the user’s current context. After Lifetrak obtains data for
each context category (space, time, etc.) via its various
sensing modalities, it then classifies the state of each con-
text category (“90024”, “morning”, etc.). Lifetrak assigns
a value of one to each of the current context states and a
value of zero to all other possible states.

Lifetrak then uses the tag values from the song database
and the values of the current context states to calculate a
rating for every song in the database. This rating represents
the users overall desire to hear a certain song in the current
context. The algorithm for calculating the song rating is not
complex. For a song, Lifetrak multiplies the value in each
tag field, by the corresponding state value in the current
context. The song rating is the sum of these multiplica-
tions. Alternatively, we can also describe this computation
as follows. Suppose we consider the set of all tag values in
a song entry to be a vector. Note that the set of all possible
states in the current context composes a vector of identical
dimension. Thus a song’s rating is merely the dot product
of the song’s tag vector and the current context’s state vec-
tor. For example, suppose a user attaches the following tags
to a song: “saturday”, “sunday”, “driving”, “warm”, “hot”,
“sunny”. Furthermore suppose that the current context is
in the following states: “90210”, “saturday”, “afternoon”,

29

Volume Up/Down
Full Screen

Stop

Previous
Track

Love It

Hate It

Next
Track

Play/Pause

Figure 5: Lifetrak user interface.

“walking”, “calm”, “warm”, “cloudy”. Thus the song would
receive a rating of two. Since the current context can never
encompass more than seven states, the maximum song rat-
ing is seven.

Figure 3 shows the XML schema associated with the con-
text information and how rankings are represented. Figures
7 and 8 in the Appendix contain examples of actual XML
files used in Lifetrak.

5.3 User Feedback
User feedback is an important aspect of Lifetrak. While

listening to a song, the user may want to alter Lifetrak’s ten-
dency to play the song in the current context. Rather than
force the user to explicitly edit the song database file, Life-
trak provides two user feedback options for dynamic song
rating change. These options are shown in figure 4. First is
the overall context equalizer which allows the user to specify
the degree to which each of the context types should influ-
ence song ratings. For example, if the user temporarily de-
cides that the entropy of his environment is more important
than the weather, he or she can quickly adjust song ratings
accordingly using the equalizer. Essentially the equalizer
sets a weighting value between one and zero for each con-
text type (location, time, etc.). Figure 9 in the Appendix
shows an example equalizer XML file. Before Lifetrak cal-
culates song ratings, it multiplies each state value in the
current context by the equalizer weight for its context type.
These modified current context values are then used to cal-
culate song ratings as described above. Referring back to
the example used in Section 5.2, suppose that the equalizer
weights for time and weather are 0.5 and 0.5 respectively.
Now the song will have a rating of one.

Lifetrak’s second feedback mechanism provides the ability
to easily adjust the context preferences for the song being
played. The user can click a button to indicate that the
song is appropriate, “love it”, or inappropriate, “hate it”,
for the current context. For each state in the current con-
text, Lifetrak either increases or decreases the value of the

corresponding tag in the song’s database entry. Again, re-
turning to the example in Section 5.2, suppose the user is
enjoying the song and clicks the “love it” button. As a re-
sult, the value of the tags “90210”, “afternoon”, “walking”,
“calm”, “cloudy”, for the song, will change from zero to 0.1.
The “saturday” and “warm” tags cannot be increased any
further because they already have a value of one. In effect,
this function alters the likelihood that the playing song will
be heard again in the current or similar contexts. Theoreti-
cally, one could forego tagging and slowly build preferences
using feedback only.

6. MUSIC PLAYER
Lifetrak is a music player designed specifically for today’s

mobile user. While other portable music players require fre-
quent and laborious input from the user, Lifetrak utilizes
its context-awareness to minimize this interaction. The re-
sult is a cleaner, simpler interface which still offers powerful
control options to the user. The following sections describe
Lifetrak’s graphical and hardware-key user interfaces, the
details of music player operation, and a low-level overview
of how Lifetrak handles music decoding.

6.1 Mobile User Interface
Lifetrak’s graphical user interface is built using the GTK+

2.6 toolkit and the Hildon UI, which provides additional wid-
gets and themeing capabilities that match the Maemo style.
The GUI is implemented in C rather than Python for several
reasons. First, execution speed is a significant factor when
developing applications for the Nokia 770 because the device
is limited to a 220 MHz ARM processor and 64 MB RAM.
Since Python is an interpreted language, it is computation-
ally more intensive than C. The context engine and ratings
generator are written in Python for its parsing capabilities,
but these tasks consume most of the device’s resources by
themselves. Second, the application requires threading in
order to update the GUI in the foreground while music is

30

Play
New Context

Play

Stopped

Pause

Pause
New Context

Play

Pause

Context
Change

Stop

Prev | Next | EOF
/ Load First

Stop

Prev | Next
/ Load FirstContext

Change

Stop

Pause

Stop

Play

Prev /
Load
Prev

Next /
Load
Next

Context Change /
Load First

Play

Next | EOF /
Load Next

Prev &
Time < 3 /
Load Prev

Prev &
Time > 3 /

Reload Current

Next /
Load Next

Prev &
Time < 3 /
Load Prev

Prev &
Time > 3 /

Reload Current

Figure 6: Lifetrak player state diagram.

played in the background. The C API of the GStreamer
multimedia library handles threading efficiently, but unfor-
tunately threading is a tricky matter for PyGTK and the
python binding for GStreamer. Finally, C provides access
to more extensive features in the GTK+ toolkit.

The Lifetrak GUI is laid out as follows. The Lifetrak icon
and slogan are displayed in the upper left corner of the GUI.
The area to the right of the icon contains the title, album,
and artist of the currently queued song. The application uses
the libid3tag library to retrieve this metadata from the song
file’s ID3 tag. While the song is playing or paused its infor-
mation is displayed in dark, black text, but when stopped
its information fades to gray. The large area below the song
metadata contains the user’s current contexts and the rating
of the current song. Although the user assigns context pref-
erences to each song when the song library is first imported,
over time the user may forget these decisions. By displaying
the current context and rating, Lifetrak reminds the user
why a specific song is being played at a particular instance.
Seeing this information also can help the user assign prefer-
ences more accurately to songs added in the future. To the
left of context display is the volume slider bar, which con-
trols the volume of the currently playing song (independent
of the system volume control).

Below the context area, along the bottom of the GUI, is
a toolbar containing the primary user controls. It consists
of standard music player features such as a skip-to-previous
button, stop button, play/pause button, skip-to-next but-
ton, and seekbar. The seekbar displays the total time, cur-
rent time, and current position of the loaded song. Via the
seekbar, the user can scroll to any point within the currently
playing song. The toolbar also includes unique “love it” and
“hate it” buttons. These offer the user a simple way to pro-
vide feedback about the current song. In an effort to make
Lifetrak even more convenient for mobile users, each GUI
control is mapped to a Nokia 770 hardware key. Hence one
can operate Lifetrak without viewing or touching the visual
display.

Noticeably absent from the Lifetrak GUI is a playlist win-
dow or file-chooser dialog box; this is intentional. These
GUI features are relics of conventional portable music play-
ers. Although Lifetrak’s back-end context processes do gen-
erate a new playlist each time the context changes, the user
does not not need to see it. Lifetrak is designed so that the
current song is likely to be enjoyed by the user in the given
context. In the event that the current song is unsatisfactory,
the user can simply skip ahead to the next best song. Even
while the player is stopped, the user can search through the
playlist by skipping ahead and behind.

Finally, the pull-down menu-tab is located in the top left
corner of the GUI. Currently the menu includes a button to
invoke the context equalizer dialog box, a button to invoke
full screen mode, and a button to close the application. In
the future, the menu will include a help section and several
new user preference settings.

6.2 Player Operation
Lifetrak is designed to behave similar to a normal portable

music player with several modifications to leverage its context-
aware capabilities. When Lifetrak is launched from the
Maemo desktop, the first song in the playlist is automat-
ically loaded in the ’stopped’ state. The user simply presses
the ’play/pause’ button to begin listening.

In the case that a change in context has not occurred,
the primary control buttons function as they would in a
standard software music player. When the player is in the
’stopped’ or ’paused’ state, pressing the ’play/pause’ changes
the state to ’playing’. When the player is in the ’playing’
state, the ’play/pause’ button changes the state to ’paused’,
and the player saves its position in the current song. When
the ’stop’ button is pressed in any state, the state is changed
to ’stopped’ and the player resets its position to the begin-
ning of the current song. Regardless of the player’s state,
pressing the ’skip-to-next’ button loads the next song in the
playlist. If the player’s current song position is less than
three seconds (this includes the ’stopped’ state), pressing

31

the ’skip-to-previous’ button loads the previous song in the
playlist. However, if the current song position is greater
than three seconds, the player resets its position to the be-
ginning of the current song. In either case, the player retains
its state. In the event that the user skips past the end of
the playlist, the player wraps back to the first song in the
playlist.

Player operation becomes slightly more complicated when
a change in context occurs. The music player periodically
checks the status of the playlist XML file at a rate of 1 Hz.
If the file is modified, the player immediately updates the
context information displayed in the GUI, and also displays
an info-box to notify the user of the context change. If the
player is in the ’stopped’ state, then it immediately loads
the first song in the new playlist. However, if the player
is ’paused’ or ’playing’, it is fair to assume that the user
would prefer to finish listening to the current song. In these
situations the player raises a flag to signify that the context
has changed. When the current song reaches end-of-file, or
if the user presses ’stop’, ’skip-to-previous’, or ’skip-to-next’
the player loads the first song in the new playlist.

6.3 Music Decoder
Due to Lifetrak’s unique features, we chose to implement

our software music player from scratch rather than build
Lifetrak on top of a preexisting player. Although of min-
imal research value, this process presented somewhat of a
challenge because of the lack of example multimedia ap-
plications for the Maemo development environment. Life-
trak’s music playing functionality is built on top of the open-
source GStreamer multimedia framework. Playing a song in
GStreamer is done by assembling the source file, the desired
compression decoder, and the audio sink into a pipeline.
Currently Lifetrak only supports song files in the MP3 for-
mat. However we plan to support Ogg-Vorbis, WAV, AAC,
and MP4 files in the future. GStreamer and Maemo can
handle each of the aforementioned compression standards,
so expansion should require minimal effort. The GStreamer
API also provides functions for setting the volume, getting
the position, and setting the position of the current song.
Finally, the Nokia 770 does not have an independent sound
card, but instead uses a dedicated digital signal processor
(DSP) to decode and mix audio streams for the sound hard-
ware. The DSP minimizes load on the main processor and
prolongs battery life considerably.

7. DISCUSSION
There are many features that need to be added to Life-

trak in order to make it more usable and richer in terms
of user experience. The following section details some of
the future work plans for the Lifetrak project. Specifically,
details about concepts to expand on are presented.

7.1 Context Manager

7.1.1 GUI Interface
The GUI interface for Lifetrak is important if it is to be

easily operated by mobile users. There are several GUI en-
hancements that need to be made for Lifetrak in general.
One of the fundamental interfaces that will be developed
is a component for the song database context tagger. Cur-
rently, to tag contexts to songs (associate contexts for spe-
cific songs) one must edit a XML file manually. If a user’s

song database is very large, this manual operation will be
inefficient. Thus, we imagine two ways to solve this prob-
lem. In one type of interface the user ”drags and drops”
context tags on songs. In addition, in order to manage tags
and songs in a more cohesive fashion, an iTunes type inter-
face can be created in which the song database is displayed
indexed by characteristics such as musical attributes, con-
text tags, and other properties related to frequency of song
play. Also, searching capabilities based not only on song
attributes but also on context information should be cre-
ated. Finally, one can imagine only indicating the contexts
in which to not play a song. This may enable users to spend
less time configuring the song database.

7.1.2 Tagging Techniques
Another idea to explore is whether song tags should di-

rectly represent context states, as they currently do. A more
intuitive approach is to add a layer of indirection. One would
tag songs with qualities or emotions normally associated
with music. As an example, tags such as ”happy”, ”sad”,
or ”upbeat” can be created. Then a mapping would occur
to correspond these qualities to the specific contexts. This
would probably make it easier for users to make the connec-
tion between songs and contexts in the configuration phase.
Also, this idea has the potential to save time for users as
well. It is likely that users will only create a few description
or emotion tags and associate those tags to many contexts.
So, initially the user must link descriptions or emotions to
corresponding contexts, and after a new song is added, the
user simply tags it as ”upbeat”, and it will be played in the
appropriate situations.

7.1.3 Collaborative Tagging
In addition to giving the user additional tagging tech-

niques, the idea of using preexisting tagging infrastructures
needs to be analyzed. There are many services that already
have tags on songs based on the analysis of the music it-
self. Furthermore, there are services that enable users to
tag certain songs and then share their preferences so that
songs for collective tags can be queried and listed [9]. One
can imagine giving users the option of listening to similar
songs based on the data that is provided by these services.
Also, if there are tags already produced that are named by
the contexts generated by Lifetrak, then that information
can be used to figure out potential song recommendations.
Overall, the idea of tagging songs and managing songs is a
space that needs to be further explored.

7.2 Context Generation
Currently, the Nokia 770 requires multiple external mod-

ules to provide the necessary sensing modalities for the con-
text engine. For example, location and speed is measured
by an external GPS unit. When WiFi is not available, a
Bluetooth and GPRS enabled mobile phone is needed to ac-
cess RSS feeds on the internet. A single modular hardware
component that could provide these modalities would make
Lifetrak more convenient for mobile users.

Furthermore, much context information is not fine-tuned
to the specific state of the user. Lifetrak could provide a
more personalized user experience if the context generation
occurred locally. Some of these services could be provided by
leveraging GPS coordinates as opposed to a zip code trans-
formation. For instance, getting traffic or weather infor-

32

mation from the Internet resources using the GPS location
values would make it a bit more specialized for the user.
Also, one could also make the argument that the sensing
could be local. There are several sensors that can be used
to get better context locally, such as photodiode or humidity
sensors, to get more granular information. This information
can be used solely if connectivity is not available or could
augment high level context information.

7.3 User Feedback
To influence what songs should be played in a certain

context once a playlist has been generated by the context
engine, one must use the ”love it” and ”hate it” buttons or
changing values of the context equalizer. But what songs
are actually picked makes a big difference on how much a
player gets used. Thus, giving the user the ability to adjust
the playback in a certain context is important. One can
imagine two contexts being very similar and thus the same
set of songs get played in both contexts. The idea of adding
freshness and jitter factors would enable the user to mixup
what songs are played back in a controlled fashion while
still following the fundamental idea of context-aware music
generation. Basically, the freshness factor enables a user to
prevent recently played songs from being re-played in high
frequency even if their rating is high when contexts change.
The jitter factor adds a normalized change to the ratings in
a certain context’s playlist so that playback of songs is not
in the same chronological order. Both these factors should
be incorporated in the player GUI as slider bars that users
can change.

7.4 Other Music Sources
Once context information is obtained, one does not have

to be limited to the song database of the user for a music
source. Instead, the idea of using the context information to
rank other forms of media including sources that are avail-
able in a streaming form via the Internet or even radio sta-
tions (satellite and normal) is a logical next step. The other
forms of media have to be annotated by the user in some
form to correspond to a context, but once this process is
done they can easily be used as sources for music.

8. CONCLUSION
One of the most popular forms of entertainment for mo-

bile users is listening to music. Currently the user’s music
listening experience is dictated by predefined playlists, ran-
dom selection of songs, or tempo matching solutions. For
the most part, listening enjoyment requires explicit user in-
put. Lifetrak uses technologies related to sensing and ap-
plies it to a music player so that the user can spend less
time choosing what music to play and more time enjoying
it. Music is tagged by the user to be played in a certain con-
text. The context is obtained by using various resources, and
music is correlated with the user defined tagging. The con-
text information includes the user’s location, time, speed of
movement, entropy of the environment, and weather. Since
Lifetrak is designed with the mobile user in mind, it provides
a simple, easy to use GUI that can be manipulated by users
on the go. Lifetrak also has several shortcuts that enable
playback control without explicit user attention. Overall,
Lifetrak provides a user-centric music listening experience
by using context to influence what songs should be played
in a mobile setting.

9. REFERENCES
[1] K. Blanchette. Effects of MP3 Technology on the

Music Industry: An Examination of Market Structure
and Apple iTunes. College of the Holy Cross.
Retrieved September, 30:2004, 2004.

[2] Apple. Apple ipod family.
http://www.apple.com/ipod, 2006.

[3] S.I. Tamminen, A.I. Oulasvirta, K.I. Toiskallio, and
A.I. Kankainen. Understanding mobile contexts.
Personal and Ubiquitous Computing, 8(2):135–143,
2004.

[4] Sony. Sony walkman bean mp3 player.
http://www.sonystyle.com/walkman, 2006.

[5] G.T. Elliott and B. Tomlinson. Personalsoundtrack:
Context-aware playlists that adapt to user pace. In
Conference on Human Factors in Computing Systems,
pages 298–304. CHI, April 2006.

[6] G. Wijnalda, S. Pauws, F. Vignoli, and
H. Stuckenschmidt. A personalized music system for
motivation in sport performance. Pervasive
Computing, IEEE, 4(3):26–32, 2005.

[7] P. Riddle. Tags: What are They Good For?
http://www.ischool.utexas..edu, 2005.

[8] J. Crossett. Social Classification of Data.
http://jamescorssett.com, 2006.

[9] LastFM. Last.fm, the social music revolution.
http://www.last.fm, 2006.

[10] R. Want, B.N. Schilit, N.I. Adams, R. Gold,
K. Petersen, D. Goldberg, J.R. Ellis, and M. Weiser.
An overview of the PARCTAB ubiquitous computing
experiment. IEEE Personal Communications,
2(6):28–43, 1995.

[11] G.D.B. Abowd, C.G.B. Atkeson, J.B. Hong, S.B.
Long, R.B. Kooper, and M.B. Pinkerton. Cyberguide:
A mobile context-aware tour guide. Wireless
Networks, 3(5):421–433, 1997.

[12] M.S. Pandit and S. Kalbag. The selection recognition
agent: instant access to relevant information and
operations. Proceedings of the 2nd international
conference on Intelligent user interfaces, pages 47–52,
1997.

[13] A.K. Dey. Context-aware computing: The CyberDesk
project. Proceedings of the AAAI 1998 Spring
Symposium on Intelligent Environments, pages 51–54,
1998.

[14] P. Dourish. Seeking a Foundation for Context-Aware
Computing. Human-Computer Interaction, 16(2, 3 &
4):229–241, 2001.

[15] JA Landay and TR Kaufmann. User interface issues
in mobile computing. Workstation Operating Systems,
1993. Proceedings., Fourth Workshop on, pages 40–47,
1993.

[16] S. Sarker and J.D. Wells. Understanding mobile
handheld device use and adoption. Communications of
the ACM, 46(12):35–40, 2003.

[17] Nokia. Nokia 770. http://www.nokia.com/770, 2006.

33

APPENDIX
A. XML FILE EXAMPLES

Figures 7, 8, and 9 are XML files used in Lifetrak.

1 < l i f e t r a c k >
2 <music>
3 <song>
4 <id>1</id>
5 < f i l e \ name>f i l e 1 </ f i l e \ name>
6 <a r t i s t \ name>a r t i s t 1 </a r t i s t \ name>
7 <song\ name>song1</song\ name>
8 <album\ name>album1</album\ name>
9 <ranking >0.000000</ ranking>

10 <context>
11 <space>
12 <i n f o name=”90024” value=”0.9”>
13 </in fo>
14 <i n f o name=”90210” value=”0.0”>
15 </in fo>
16 <i n f o name=” i n s i d e ” value=”0.3”>
17 </in fo>
18 <i n f o name=”outs ide ” value=”0.0”>
19 </in fo>
20 </space>
21 <time>
22 <i n f o name=”morning” value=”0.9”>
23 </in fo>
24 <i n f o name=”afternoon ” value=”1.0”>
25 </in fo>
26 <i n f o name=”evening ” value=”0.0”>
27 </in fo>
28 <i n f o name=”night ” value=”0.0”>
29 </in fo>
30 <i n f o name=”monday” value=”0.9”>
31 </in fo>
32 <i n f o name=”tuesday ” value=”1.0”>
33 </in fo>
34 <i n f o name=”wednesday” value=”1.0”>
35 </in fo>
36 <i n f o name=”thursday ” value=”0.0”>
37 </in fo>
38 <i n f o name=”f r i d ay ” value=”0.9”>
39 </in fo>
40 <i n f o name=”saturday ” value=”0.0”>
41 </in fo>
42 <i n f o name=”sunday” value=”0.9”>
43 </in fo>
44 </time>
45 <k ine t i c >
46 <i n f o name=”s t a t i c ” value=”0.9”>
47 </in fo>
48 <i n f o name=”walk” value=”0.0”>
49 </in fo>
50 <i n f o name=”run” value=”1.0”>
51 </in fo>
52 <i n f o name=”dr iv ing ” value=”0.9”>
53 </in fo>
54 </k ine t i c >
55 <entrop ic>
56 <i n f o name=”calm” value=”1.0”>
57 </in fo>
58 <i n f o name=”moderate” value=”0.0”>
59 </in fo>
60 <i n f o name=”chaot i c ” value=”0.9”>
61 </in fo>
62 </entrop ic>
63 <meteoro log i ca l >
64 <i n f o name=”ra in ” value=”1.0”>
65 </in fo>
66 <i n f o name=”snow” value=”1.0”>
67 </in fo>
68 <i n f o name=”haze” value=”1.0”>
69 </in fo>
70 <i n f o name=”cloudy ” value=”0.9”>
71 </in fo>
72 <i n f o name=”sunny” value=”0.9”>
73 </in fo>
74 <i n f o name=”c l e a r ” value=”1.0”>
75 </in fo>
76 <i n f o name=” f r i g i d ” value=”0.0”>
77 </in fo>
78 <i n f o name=”co ld ” value=”1.0”>
79 </in fo>
80 <i n f o name=”moderate” value=”0.0”>
81 </in fo>
82 <i n f o name=”warm” value=”0.3”>
83 </in fo>
84 <i n f o name=”hot” value=”1.0”>
85 </in fo>
86 </meteoro log i ca l >
87 </context>
88 </song>
89 </music>
90 </ l i f e t r a c k >

Figure 7: Lifetrak song database file containing one
song.

1 <?xml ve r s i on =”1.0” ?>
2 < l i f e t r a c k >
3 <p l a y l i s t >
4 <music>
5 <song>
6 <id>8</id>
7 < f i l e \ name>f i l e 8 .mp3</ f i l e \ name>
8 <ranking >1.5</ranking>
9 </song>

10 <song>
11 <id>9</id>
12 < f i l e \ name>f i l e 9 .mp3</ f i l e \ name>
13 <ranking >1.4</ranking>
14 </song>
15 <song>
16 <id >10</id>
17 < f i l e \ name>f i l e 1 0 .mp3</ f i l e \ name>
18 <ranking >1.1</ranking>
19 </song>
20 <song>
21 <id>7</id>
22 < f i l e \ name>f i l e 7 .mp3</ f i l e \ name>
23 <ranking >1.1</ranking>
24 </song>
25 <song>
26 <id>6</id>
27 < f i l e \ name>f i l e 6 .mp3</ f i l e \ name>
28 <ranking >1.1</ranking>
29 </song>
30 <song>
31 <id>5</id>
32 < f i l e \ name>f i l e 5 .mp3</ f i l e \ name>
33 <ranking >1.1</ranking>
34 </song>
35 <song>
36 <id>4</id>
37 < f i l e \ name>f i l e 4 .mp3</ f i l e \ name>
38 <ranking >1.1</ranking>
39 </song>
40 <song>
41 <id>3</id>
42 < f i l e \ name>f i l e 3 .mp3</ f i l e \ name>
43 <ranking >1.1</ranking>
44 </song>
45 <song>
46 <id>1</id>
47 < f i l e \ name>f i l e 1 .mp3</ f i l e \ name>
48 <ranking >0.96</ranking>
49 </song>
50 <song>
51 <id>2</id>
52 < f i l e \ name>f i l e 2 .mp3</ f i l e \ name>
53 <ranking >0.7</ranking>
54 </song>
55 </music>
56 <context>
57 <space>
58 <i n f o name=” i n s i d e ” value=”1”/>
59 <i n f o name=”90024” value=”1”/>
60 </space>
61 <time>
62 <i n f o name=”f r i d ay ” value=”1”/>
63 <i n f o name=”night ” value=”1”/>
64 </time>
65 <k i n e t i c/>
66 <ent rop i c/>
67 <meteoro log i ca l >
68 <i n f o name=” f a i r ” value=”1”/>
69 <i n f o name=”warm” value=”1”/>
70 </meteoro log i ca l >
71 </context>
72 </p l a y l i s t >
73 </ l i f e t r a c k >

Figure 8: Lifetrak playlist XML file.

1 < l i f e t r a c k >
2 <equa l i z e r >
3 <i n f o name=”space ” value=”0.3”>
4 </in fo>
5 <i n f o name=”time” value=”0.4”>
6 </in fo>
7 <i n f o name=”k i n e t i c ” value=”0.5”>
8 </in fo>
9 <i n f o name=”ent rop i c ” value=”0.6”>

10 </in fo>
11 <i n f o name=”meteo ro l og i ca l ” value=”0.8”>
12 </in fo>
13 </equa l i z e r >
14 </ l i f e t r a c k >

Figure 9: Lifetrak equalizer file.

34

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

