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Abstract. Mobile phones and accompanying network layers provide a
platform to capture and share location, image, and acoustic data. This
substrate enables participatory sensing: coordinated data gathering by
individuals and communities to explore the world around them. Realizing
such widespread and participatory sensing poses difficult challenges. In
this paper, we discuss one particular challenge: creating a recruitment
service to enable sensing organizers to select well-suited participants. Our
approach concentrates on finding participants based on geographic and
temporal coverage, as determined by context-annotated mobility profiles
that model transportation mode, location, and time. We outline a three-
stage recruitment framework designed to be parsimonious so as to limit
risk to participants by reducing the location and context information
revealed to the system. Finally, we illustrate the utility of the framework,
along with corresponding modeling technique for mobility information,
by analyzing data from a pilot mobility study consisting of ten users.

Key words: Participatory Sensing, Mobility Modeling, Location Based
Services

1 Introduction

Mobile phones and the cellular infrastructure are increasingly used for more
than just communication. These platforms are being employed as tools to un-
derstand the habits and environments of individuals and communities. Many
mobile phones are already equipped with acoustic, image, and location sensors
in the form of microphones, cameras, and GPS, Wi-Fi, or cellular positioning,
and contain a Bluetooth interface that can connect to external sensors. Phones
also enable users to enter text to describe or record events. Emerging services
take advantage of these diverse modalities to support active living, dietary mon-
itoring, and analysis of environmental impact [1–3]. A complimentary vision,
referred to as participatory or urban sensing, proposes tools to engage poten-
tially large numbers of the general public in coordinated data gathering [4, 5].



Intended to enable and encourage anyone to gather and investigate previously
invisible data, participatory sensing can support advocacy - “making a case”
through distributed documentation of a community need or an issue.

Mobile phones allow for easy, convenient and widespread data collection.
Complimentary tools take advantage of phone networks and enable anyone to
coordinate participants and initiate data collection “campaigns” that focus on
social, political, or urban processes. Several challenges must be met for participa-
tory sensing applications to flourish [6, 7]. Among these is recruitment: enabling
organizers, who may be community groups or simply motivated individuals, to
select an interested and well-suited set of participants for a campaign based on
the needs and specifications of the case they want to make. Campaign organiz-
ers might base recruitment around a number of factors. In this paper, we focus
on enabling selection based upon the geographic and temporal availability of
participants. Specifically, we describe a framework that enables organizers to se-
lect a group of participants based on a campaign’s contextual (further detailed
in Section 3), spatial, and temporal coverage constraints. Furthermore, this re-
cruitment system is designed to be parsimonious in its usage of context and
location information to minimize disclosure risk for participants.

The paper is organized as follows: Section 2 describes a motivating appli-
cation that illustrates why availability-based recruitment is useful. Section 3
discusses the recruitment problem in more detail. Section 4 overviews the design
goals of the system and how the proposed recruitment stages adhere to these
goals. System details are presented in Section 5, and we evaluate the recruitment
framework using results from a pilot mobility study in Section 6. The paper ends
with a discussion of future work items in Section 7.

2 Motivational Applications

Not all participatory sensing campaigns will need to select a limited pool of
well-suited participants. Many campaigns will benefit from engaging as many
people as possible, gaining the advantages of diverse backgrounds, interest, and
availability [4]. Some campaigns, however, may face constraints that prevent
them from incorporating all interested volunteers. If campaign organizers pro-
vide financial incentives for participation, distribute hardware to volunteers, or
train individuals in specialized data collection, organizers may need to limit
the number of possible participants or focus on select subset. Coverage-based re-
cruitment can help organizers make selection decisions according to participants’
geographic and temporal availability.

An example campaign that benefits from coverage-based recruitment is in-
spired from the sustainability initiative at UCLA. In recent years, there has
been a strong focus on raising campus awareness of environmental sustainabil-
ity [8]. In coordination with the Education for Sustainable Living Program, we
are undertaking a project to create a “green map” of campus sustainability
resources. Volunteers will chart recycling bins and bicycle racks by taking geo-
tagged photos [9]. They will also document negative impacts such as improper



waste disposal (recyclables in regular bins) and inefficient energy usage (lights
continuously left on outdoors during daytime). Having images along with loca-
tion information is important since it provides a visual reference of the point of
interest and enables individuals to later annotate with additional data, for ex-
ample noting the number of slots in a bike rack or the type of recyclable thrown
in a regular waste basket. The campus sustainability campaign will take advan-
tage of the geographic coverage that a selected group of volunteers can provide
by asking volunteers to contribute information that they see as they go about
their regular routines. The participants will focus on mapping “tasks” that run
weeks at a time. The information that is collected will be used to improve cur-
rent sustainability processes (e.g. by suggesting better placement of recycle bins
or informing facilities where efficiency problems exist) as well as to help educate
the UCLA community of areas for improvement.

The campus sustainability campaign will benefit from coverage-based re-
cruitment because it depends on observations in a limited region (UCLA) over
a long period (several weeks). Further, during the campaign, we will provide
participants with the mobile devices and accompanying data plan necessary to
perform the data collection. We will also hold training sessions to help partici-
pants understand the mapping tasks and goals. For these reasons, we must focus
resources on a select number of participants. Thus, it is important to recruit
participants whose availability, in terms of context (in this case transportation
mode), space, and time, matches campaign needs. The campaign will remain
open for anyone on campus to participate with their own mobile phones, but the
hardware resources and training will be limited to a select few.

In this campaign, well-suited participants regularly walk on campus during
the daytime (individuals that run, bike, or drive may be less likely to notice
points of interest, and collecting clear photographs is more difficult at night);
cover as much area as possible; and are consistent in their routes and routines.
Recruiting participants whose availability matches the campaign coverage con-
straints will provide the best chance of documenting sustainability resources
using a limited pool of individuals in a constrained time frame. Throughout the
rest of the paper, the campus sustainability campaign is used as an example to
explain the details of the recruitment framework.

Although we detail only one campaign as an example here, many other data
collection initiatives could benefit from a coverage-based recruitment system.
Examples include the CycleSense initiative, which tasks bike commuters to col-
lect information about the quality of bike routes and paths, and the Walkability
project, designed to gather safety issues of walking paths in local neighbor-
hoods [10, 11].

3 Problem Description and Challenge

Like many crowd-sourcing services on the web [12], a campaign seeks interested
participants willing to volunteer their time to help with the data collection task.
For certain campaigns it might be appropriate to focus on a specific set of volun-



teers from an overall pool. In this situation, choosing volunteers wisely becomes
critically important. Note that this parallels the recruitment that occurs in web
services that provide a marketplace for commissioned work, such as Amazon Me-
chanical Turk and GURU.com, in that well-suited individuals are preferred [13,
14]. Organizers of campaigns may wish to consider a number of factors. For
example, organizers could request that participants have specific sensor capabil-
ities (e.g. camera, microphone). Organizers may also wish to recruit participants
who have certain performance standards based on previous involvement in cam-
paigns [15] and are willing to be flexible to conform to sensing requests. This
paper, however, focuses on a third requirement: the geographic and temporal
availability of participants.

At a technical level, the recruitment problem in participatory sensing is sim-
ilar to that of static sensor selection and placement [16] and robotic motion
coordination for sensing [17]. The distinction is that participatory sensing must
consider human mobility, which is not directly controllable. However, mobility-
based recruitment does takes advantage of the fact that people’s routes and
locations are often regular and repetitive [18, 19]. This work differs from existing
systems that use mobile phones for sensing by concentrating on selecting a set of
participants so that geographic coverage can be maximized. Our approach also
takes into account variation of participant mobility over time. Previous work has
geared task assignment for opportunistic in-situ sensing [20, 21] or has focused
on initiating sampling around specific location “bubbles” (regions) [22, 23]. Fur-
thermore, our work focuses on campaigns targeting phenomenon that are not
easily expressed as Gaussian processes or do not have spatial and temporal dis-
tributions that are known a priori [24]. For instance, locations of sustainability
assets are often non-uniformly distributed and instances of improper resource
(energy, waste, water) usage are dependent on processes that are dynamic based
on space, time, and other external factors (which will need to be learned through
data collection).

We outline a recruitment engine that uses campaign specifications provided
by an organizer to select a limited set of potential volunteers based on par-
ticipants’ previously-gathered mobility profiles. A mobility profile is derived
from the participants’ context-annotated mobility traces: streams of previously-
collected location, time, and context data. Location and time are obtained via
GPS receivers embedded in mobile phones or from cellular network infrastruc-
ture [25]. Context includes a number of inferences drawn from sensors available
on the mobile phone, but we specifically concentrate on the transportation mode
(walking, running, biking, or in motorized transport) of an individual which can
be obtained by analyzing GPS traces [26].

To define mobility-based requirements for their campaign, a campaign or-
ganizer would limit a campaign to geographic regions (e.g. UCLA), temporal
boundaries (e.g. between 2/1/09 and 6/1/09), and specific time period (e.g.
weekdays between 8 a.m. and 6 p.m.). Organizers could also specify important
contextual information, such as preferred modes of transportation. The recruit-
ment engine would match these specifications with participants’ mobility profiles.



The challenge for a engine is finding a subset of volunteers whose combined mo-
bility profiles best fulfills the coverage requirement. Finding the appropriate set
of participants requires iterating through all subset combinations of individuals
considering ordering since availability could be redundant. And since participant
routes and habits may differ over the course of a campaign, the recruitment sys-
tem needs to analyze whether the mobility profiles of participants change as the
campaign runs and alert organizers to possible coverage problems.

4 Design Goals

Recruiting volunteers for participatory sensing is somewhat analogous to recruit-
ing volunteers or employees in non-virtual environments. Considerations include
geographic and temporal availability as well as qualifications and willingness.
Drawing on this similarity, we have created a coverage-based recruitment sys-
tem that consists of three distinct stages: the qualifier, interview, and progress
review, modeled after real-world recruitment processes. Figure 1 shows each of
these three recruitment steps with the perspective of campaign actions. Further-
more, an outline of the three stages exists below.

1.) Organizer posts 

campaign description and 

qualifier query. 

2.) Interested volunteers run 

query on their mobility 

profile; send results to 

Recruitment Engine. 

4.) Recruitment 

Engine asks for mobility 

data from qualified 

participants.

6.) Recruitment Engine 

finds well-suited 

participants (best coverage 

under budget).

9.) Recruitment Engine 

sends consistency check 

query to participants.

10.) Participants run 

consistency check and send 

results to Recruitment 

Engine. 

11.) Recruitment Engine 

alerts organizer to adjust 

campaign objectives or 

participants involved. 

3.) Recruitment Engine 

selects qualified 

participants.

5.) Participants send data 

for spatial, temporal, and 

activity block of interest to 

Recruitment Engine.

Campaign 

Executes

Campaign 

Completed

Qualifier Interview Progress Review

Fig. 1. Campaign Recruitment Flow with Recruitment Steps Labeled

– The Qualifier: To be considered for a campaign, potential participants must
have a certain number of significant locations, routes, and desired transporta-
tion modes within a certain time and space.

– The Interview: The recruitment engine compares participants that meet
initial qualification requirements to determine which limited subset of indi-
viduals maximize coverage over a specific area and time period.

– The Progress Review: As a campaign runs, the recruitment engine checks
the coverage consistency of participants by periodically evaluating their mo-
bility during the campaign against their qualifying profile. If similarity scores



are below a defined level, the engine alerts campaign organizers so they may
take action (check for coverage, provide feedback, etc.)

During the design of the recruitment system, we were concerned with how
best to handle querying and sharing of participant mobility information. Because
this information describes an individual’s routines and habits, sharing mobility
profiles presents a number of exposure risks to individuals [27–29]. Thus, a major
design principle employed for the recruitment system was parsimony: sharing the
minimal amount of information needed to meet an application’s goals [30, 31].
The recruitment system uses a framework that limits the amount and granularity
of mobility information shared during each step of the recruitment process. In
this section, we detail how our system achieves this design goal by describing
how we minimize what information is shared, with whom it is shared, and how
long it is retained during each stage of the recruitment process. All of these
considerations are important factors in aiding participants to understand and
control the privacy of their data [32]. We assume that all mobility information
used to generate a profile resides with the participant in a private data store,
and participants must opt-in to allow queries to be run on this store.

If a participant is interested in a campaign, they can opt to run the quali-
fier query on their mobility information. These queries are created by campaign
organizers and run on the participant’s data store. Only aggregate results are
shared with a campaign organizer (e.g. whether geo-spatial qualifications have
been met or how consistent a profile is). The campaign organizer therefore has
no access to a participant’s detailed location information during the qualifier
stage. Only during the interview stage does data from the mobility profile need
to be shared with campaign organizers. In order to find a cover set among the
participants, the recruitment engine needs access to location information. At
this stage, however, not only have participants expressed interest in a campaign,
they have a good chance of being chosen to participate. If a participant trusts a
campaign organizer and has applied to their campaign, more information sharing
may be justifiable. Parsimony, however, remains important. Participant mobility
data shared with the recruitment engine is limited to a particular spatial region
(e.g.UCLA) and time span (e.g. weekdays). Also, rather than sharing granular
location information, the recruitment engine provides the organizer with a gen-
eralized coverage map of the chosen region (see Figure 4 in Section 6.3). If the
coverage area is small, an organizer may be able to infer participants’ routes,
but a targeted coverage area limits exposure of locations not relevant to the
campaign. Once the interview process has ended, the system deletes the shared
location data and only maintains the participant subset coverage data for the
duration of the campaign. Finally, like the qualifier, the progress review is run
on the participant’s store, and only aggregate measures of consistency are shared
with campaign organizers. An organizer will know, for example, if a participant
follows similar routines as determined by the interview process, but exact routes
and locations will not be reported.



5 System Details

The steps involved in the recruitment process and the pre-processing procedures
needed to build mobility profiles are detailed in this section. We place particular
emphasis on describing the underlying algorithms employed. We also explain the
inputs and outputs of each stage along with parameters that need to be specified
for execution of the steps in the framework.

5.1 Building Mobility Profiles

Each of the recruitment stages depends on the transformation of a participant’s
raw mobility information into elements that can be used for recruitment. We
assume that participants have previously used their mobile phones to collect raw
data in the form of GPS traces (latitude, longitude, time). Services already exist
to collect and manage this type of data [33, 34], and we expect that historical
location data will become increasingly available. Mobility information can also
be obtained by having individuals annotate maps manually, but in this paper we
focus on mobility data that is verified through actual in-field data collection. We
plan to handle heterogeneous sources of mobility information along with allowing
individuals to specify different granularities of data as future work (Section 7).

The recruitment engine can process raw mobility data to infer significant
locations and routes along with associated transportation modes. Over time,
this processed data can form participant mobility profiles. The steps required to
build these profiles include:

– Pre-Processing: Since sampling rate may vary, the engine first normalizes
the GPS logs to a set sample rate (every 30 seconds in our experiments) and
fills in missing values (e.g. when an individual goes indoors and loses GPS
signal). For cases where there is a gap in data and the points before and after
are significantly different, the engine generates a likely route using Google
Route generator, taking into account time and distance traveled [35].

– Destination and Route Inference: Next, the engine finds places where
users spent a continuous amount of time (15 minutes) within a certain dis-
tance (50 meters) and considers this a “stay” [36]. Stays within a distance
(250 meters) are clustered into “destinations” using density based cluster-
ing [37]. Destinations are then used to divide a GPS log into significant
locations and routes. Time and distance thresholds were chosen based on
varying the parameter combinations and analyzing which were most effective
at representing participants’ notions of destinations. Routes are clustered
using average minimum point-segment distance as the comparison method
(threshold of 100 meters) and performing hierarchical clustering [38].

– Route Transportation Mode Inference: Once routes have been identi-
fied, they need to be labeled in terms of transportation mode. The routes are
first segmented based on change points (speed close to zero, loss of GPS sig-
nal) [26]. Then features such as the average, maximum, and minimum speeds,
and total distance for each segment are calculated, and used to classify in



terms of transportation modes with likely transitions considered [26]. Also,
we have explored using additional sensors on phones, such as accelerometers
and GSM/WiFi radios, to help with classification [30, 39].

5.2 Running the Qualifier

Campaign organizers can use participants’ mobility profiles to select volunteers
from as many interested, qualified candidates as possible. This is analogous to a
job or volunteer hiring process where recruiters only want to see resumes from
a pool of candidates who meet a set of minimum requirements. A participatory
sensing organizer would therefore post a description of a campaign including its
purpose, type of data needed, lifetime, and contribution expected. The organizer
would also specify qualifications based on geographic and temporal coverage by
using attributes such as the total number, uniqueness, transportation mode, and
the minimum time needed for locations and routes in a specific spatial region and
time period. The qualifier can be defined based on routes that have start/end
points that are in a specific zone as well.

The recruitment engine would run the qualification filter on interested partic-
ipants’ mobility profiles, and only share with the organizer whether an individual
meets the criteria. Interested participants who do not explicitly meet the quali-
fication may choose to share more detailed information, such as how many more
routes or locations they would need to meet the qualifier, so that the organizer
has the choice to include them if needed. The consistency of a participant’s mo-
bility information can also be used as part of the qualification. We discuss this
concept in more detail in the progress review stage below.

5.3 Running the Interview

Once the recruitment engine has identified a pool of participants who meet min-
imum qualifications, the next step is the interview. In traditional employment or
volunteer recruitment, the interview phase gives employers a better understand-
ing of the skills possessed by a set of candidates. Similarly, the participatory
sensing interview evaluates the mobility qualities of a set of potential partici-
pants, and calculates which subset would maximize a coverage utility function.

In a technical sense, the coverage-based interview process is an instance of
the budgeted maximum coverage problem [40]. Essentially, we have a participant
pool P = {p1, p2, ..., pn} with individual non-negative costs {ci}ni=1 defined over a
spatial and temporal block elements E = {e1, e2, ..., en} with associated utilities
{ui}ni=1. The goal is to find a subset of participants, P ∗ ⊆ P , for the campaign
such that the utility of elements covered by subset, U(P ∗), is maximized while
the cost of the subset, C(P ∗), is under a set budget, B, [24, 40, 41]. In summary,
we are solving the following optimization problem:

argmax U(P ∗) subject to C(P ∗) ≤ B

The budget is modeled as the resources needed to engage participants in a
campaign. Each participant has a cost, which might include both compensation



and a system opportunity cost for the individual’s participation (i.e. if adding
a participant elicits organizational or administrative costs for a campaign). The
spatial and temporal blocks, E, are defined by specifying a region and time of
interest (e.g. UCLA, weekdays from 8 am - 6 pm), spatial and temporal granular-
ities (e.g. 10000 meter2 blocks, 5 minute time spans), and a set of transportation
modes. Utility weights are associated with each block and are specified by the
campaign organizer. To get a more intuitive sense of how a utility weights can
be assigned, we consider two cases: uniform weighting and priority based. In the
first, all spatial and temporal blocks have equal weights, so the utility of each
block could be set uniformly to 1 and the maximum aggregate utility is simply
the number of blocks. The second case is priority based where certain blocks are
more important to be sensed. This can be reflected by assigning higher utility
values to the priority blocks and lower values to less important blocks.

The optimization problem of finding the best subset of participants is proven
to be NP-hard [40, 42]. Selecting a participant to be involved in a subset changes
the utility for the participants not included, and one would have to search
through all combinations of subsets to find the best solution. Since our utility
function is both sub-modular (adding a participant helps more if fewer partic-
ipants are included in the subset and less if there are more participants are in
the subset already) and non-decreasing (the utility of the subset is less than
the set that it came from), the standard greedy algorithm is guaranteed to find
a constant fraction (63%) solution when the costs of the participants are the
same [42]. In the more complex setting where the costs of participants varies, a
benefit-cost greedy algorithm where the ratio of utility to cost is considered when
adding participants could be employed to obtain a solution [41]. Also, the dual
problem of minimizing cost of the set given a particular coverage requirement
can also be solved using the greedy algorithm with a log-factor approximation
of the optimal value.

5.4 Running the Progress Review

The end of the interview process results in selecting a set of participants to
execute the campaign. For certain campaigns, there may need to be additional
checkups to ensure that the mobility of participants is consistent with their pre-
established profiles and coverage over the area of interest is being maintained.
This is especially true for campaigns with a long lifetime, during which people’s
routines may change. Thus, a “progress review” can check a participant’s original
mobility profile for similarity with current behavior. The campaign organizer sets
the intervals for, and frequency of, reviews.

In order to check for similarity, the recruitment engine models a participant’s
mobility profile for a particular period of time using an m x n matrix with a
set of corresponding transportation modes [19, 43]. The m rows in the matrix
represent spatial blocks (e.g. 10000 meter2 grids, zip codes, census blocks) while
the n columns model distinct time spans. An entry in the matrix would be the
proportion of time spent performing a set of transportation modes within the
time period of interest in a particular spatial block for a time span. Based on



previous work that explores daily human location patterns, we chose a day as a
representative time span for our analysis [18, 19, 43]. This matrix is normalized
by applying the arcsine-root transformation [44]. Throughout the rest of the
paper, we refer to this data construct as an “association matrix”, A.

Since we are interested in dominant mobility patterns, a summarization
method is necessary. An effective technique to analyze multi-dimensional data for
major patterns is Principal Component Analysis (PCA). PCA finds a set of or-
thogonal axes (eigenvectors) that linearly transform the original data so that the
largest amount of variance is explained [45]. The first coordinate axis explains
the most variation in the data and the subsequent axes explain a decreasing
amount of variation. The eigenvalues obtained from PCA explain the amount of
variation for which each eigenvector accounts. To obtain the dominant patterns,
the original data is projected onto the eigenvectors weighted by the eigenvalues.
Oftentimes when analyzing location association data, the resulting projections
are referred to as “eigenbehaviors” [19, 43].

In practice, a more flexible technique to find eigenbehaviors is Singular Value
Decomposition (SVD) [45]. Given the association matrix A, the SVD would be:

A = U ·Σ · V t

In this decomposition, U and V are the left and right singular vectors and Σ is
the diagonal matrix of singular values. Thus, in the terms of PCA, the singular
values are the square roots of the corresponding eigenvalues, the columns of V
represent the eigenvectors, and the columns of U are the eigenbehaviors [19, 43,
45]. Since the eigenbehaviors represent patterns that are common across different
time spans (days) and the singular values represent the importance of each pat-
tern, one can compare consecutive time periods by taking the cosine similarity
of the behavior vectors weighted by the singular value importance (percentage of
variance represented by a singular value) [43]. Hence, if there exists two eigenbe-
haviors, Ut1 and Ut2, representing different time periods, t1 and t2, with singular
value importance, Wt1 and Wt2, the similarity metric would be defined as:

Similarity(Ut1, Ut2) =
rank(Ut1)∑

i=1

rank(Ut2)∑
j=1

wt1iwt2j |Ut1i · Ut2j |

This measure of similarity [43] (or consistency) is indexed from 0 (least sim-
ilar) to 1 (most similar) by normalizing on the base eigenbehavior similarity.
Ideally, not all eigenbehavior vectors need to be used. If a large variation of the
behaviors is explained by a few vectors, then the remainder of the components
can be ignored. This SVD based approach has been used previously to analyze
videos, documents, and cellular/WiFi association patterns for clustering pur-
poses [19, 43, 46, 47]. We instead focus on using this technique as a measure of
an individual’s consistency of mobility patterns over time.



6 Experiments

Because we are in the preliminary stages of several campaigns, we base our
evaluation of the coverage-based recruitment system on mobility profiles gener-
ated during a pilot mobility study. Running this data through our recruitment
process, with the campus sustainability campaign as context, illustrates the per-
formance and usefulness of the different stages of our approach.

6.1 Generating Sample Mobility Profiles

We recruited ten participants for the pilot study and asked them to carry a Nokia
n95 to automatically capture and upload a GPS time series (latitude, longitude,
and speed every 30 seconds). We used this information to create transportation
annotated mobility profiles for the participants. The study was conducted over a
time-span of sixty five days where seven users were recruited at the start and an-
other three were phased in during the mid-point (due to equipment availability).
Participants were requested to log information at all times, but had the right to
turn off their devices at any time (Figure 2). Participants were all affiliated with
UCLA so that a common area of coverage would be available.
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Fig. 2. Mobility Study Participation Statistics (Organized by Participants/Days)

6.2 Qualifier: Evaluating UCLA Destinations and Walking Routes

For the campus sustainability campaign, well-suited candidates would have walk-
ing routes to and from places on campus. Thus, a qualifier filter for this campaign
could be: “Participants that have at least 4 daytime walking routes with desti-
nations starting or ending at UCLA during a week.” Using this qualifier on pilot
participants’ sample 5-weekday stretches indicates that seven participants (#3,
#4, #5, #6, #7, #8, #9) would qualify for the campaign while three (#1, #2,
#10) would not. Figure 3 shows the mobility information during a 5-weekday
span for one participant that matches the qualifier (#8) and one that does not
(#2). Further, the figure provides the walking route statistics for each partic-
ipant. User #8 has many walking routes on campus (this individual lives on



campus and prefers walking to other transport modes). User #2 has only one
walking route (this participant drives to campus and parks under their office).

Participant
# Walk 

Routes

1 2

2 1

3 6

4 9

5 8

a.) Participant #8 TAM Data b.) Participant #2 TAM Data c.) Qualifier Filter Results

6 4

7 8

8 6

9 5

10 2

Fig. 3. Mobility Information for Participants and Qualifier Results

6.3 Interview: Evaluating Best Coverage of UCLA

To evaluate the coverage of the UCLA campus by qualified participants, we
perform a set cover for a daytime hours during a 5-weekday span where the
spatial granularity is set to 10000 m2 blocks, the time block granularity is 1
hour, and the activity is walking. The results of maximizing coverage, with the
budget set to infinity, and individual participants costs and block utility weights
all set evenly, are shown in Figure 4.

The results indicate that participant #3 is the most valuable since he spans
the most spatial/temporal blocks. In terms of spatial area alone, participants
#8 and #9 provide the most coverage. These two individuals both live near
campus (in close proximity) and often walk to UCLA from home. Notice that
participant #9’s score is much higher than #8’s. This is due to the fact that
#9 and #8 have common coverage, and the common areas count toward #9’s
score, since she spans more blocks overall. The interview process can also adapt
to campaign budgets and participant costs. For instance, if the campaign had a
budget of five credits, where each individual had a cost of one credit, then the
interview process would eliminate participants #5 and #4.

In the above analysis, the specifications for the spatial and temporal blocks
were chosen in a “generic” fashion to illustrate the capabilities of the interview
process based on the mobility data available. But for the sustainability campaign,
different specifications might exist for the attributes. For instance, emphasis
could be placed in certain regions (around specific buildings) and time periods
(during peak campus occupancy), the time granularity could be changed (“day”
level indexes of time as opposed to individual hours and spatial blocks contoured
to walking paths on campus).



Participant Coverage Score
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b.) Map of Coverage Resultsa.) Maximum Cover Results
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Fig. 4. Maximum Walking Coverage of UCLA During Daytime Weekday Hours

6.4 Progress Review: Comparing Similarity of Profiles Over Weeks

If participants’ availability deviates from their established mobility profiles dur-
ing a campaign, the organizer should be alerted. The inconsistent participant
could be checked to see if their coverage still meets coverage requirements by
running the interview process or the organizer might need to recruit additional
participants to help with the campaign. The progress review consistency “check
up” is especially important for long running data collections, such as the campus
sustainability campaign, since participants’ behavior can change over time.
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a.) Participant #5 Base Profile b.) Participant #5 Similarity Results

Fig. 5. Consistency of Participant #5’s Mobility Profile (Base Compared to 5 Weeks)

To demonstrate the utility of the performance review, the availability changes
of two participants (#5 and #9) in the pilot mobility study is analyzed. Note
that since the spatial granularities are set again to 10000 m2 blocks and a 5-
weekday span is analyzed, the association matrix is 208 (representing the blocks
at UCLA) by 5 (number of days) in size. Participant #5 provided GPS infor-



mation for the longest period, and an interview determined that the individual
was very consistent in his routes and habits over the time span. To test whether
the progress review technique would corroborate this consistent behavior, we
employed SVD to obtain eigenbehaviors based on daytime walking instances for
the first 5-weekday span, and then compared them with the eigenbehaviors from
the next four 5-weekday spans at the UCLA location. The top three eigenbe-
haviors were used, in this comparison and the one below, since they represented
over 90% of the variance (using all five components results in similar consistency
measures as considering the top three). Figure 5 (a.) illustrates the mobility in-
formation for the base week, and Figure 5 (b.) depicts the similarity results for
the progress review. The average similarity over the time span was 0.82.

Not all users are as consistent as Participant #5. For instance, Participant
#9’s mobility drastically changed over the campaign period. An interview re-
vealed that the participant moved her home address during the time period.
Thus, her daily routes and locations changed significantly. We performed a con-
sistency check comparing two consecutive 5-weekday spans, between which the
move occurred, to her base profile (Figure 6). As expected, the first week is fairly
consistent with the base profile, achieving a similarity score of 0.95. The second
week is significantly different, achieving a similarity of only 0.67.

a.) Participant #9 Base Profile
b.) Comparison #1 with 

Similarity Score of 0.95

b.) Comparison #2 with 

Similarity Score of 0.67

Fig. 6. Consistency of Participant #9’s Mobility Profile (Base Compared to 2 Weeks)

As shown above, it is not always necessary to use all the eigenbehaviors
when performing a consistency check since dominant components could exist
that explain the majority of the variance. To further illustrate this point, we
analyzed all participant mobility data in regards to the UCLA campus and
daytime walking patterns with 10000 m2 spatial blocks which results in a 208
by n coverage days association matrix. Table 1 shows the number of days in
which there was a coverage match for each participant along with the fraction of
variance represented by the top three eigenbehaviors. Based on the analysis, the
top three components can represent an average of 0.76 fraction of the variance of
the participants’ behavior. These dominant patterns represent walking behavior
influenced by location choices for work and going to different places for dining.



Table 1. Participant UCLA Walking Totals and Variance Fraction Represented by
Top 3 Components

Participant # of Days Variance Fraction

1 5 0.90

2 8 0.70

3 4 0.94

4 13 0.62

5 28 0.64

6 8 0.74

7 8 0.70

8 12 0.69

9 15 0.78

10 4 0.89

7 Future Work

We are currently building the overall system to manage campaigns: enabling
organizers to easily create, manage, organize data collections, and enabling par-
ticipants to find and participate in campaigns in which they are interested in.
This final section details future work on campaign recruitment. This includes
exploration of making the recruitment process clear for participants involved, as
well as enhancements to make the recruitment more flexible and effective.

7.1 Designing for System Legibility

Because a coverage-based recruitment system demands that participants share
information about their locations, habits and routines, privacy is an important
concern. We define privacy as a negotiation between participants and organizers
of what information to share or withhold. Privacy decision-making is contextual
and individually variable [48–50].

To negotiate information disclosure, individuals should understand the bene-
fits and repercussions of sharing their data. To make an informed decision, they
must understand who is asking for the data (identity); what the data will reveal
about them (granularity); what the organizer wants to use the data for (pur-
pose); and how long data will be retained by a requesting organizer (retention).
Through each stage, the system communicates to participants the nature of the
query they are running, what information the query shares and with whom, and
how long the information can be retained by the campaign organizer. The system
should also communicate the identity and reputation of a campaign organizer
to potential participants, so that participants can decide whether to trust an
organizer with their mobility information. Communication between the system
and the participant is essential to the system’s legibility: the ways in which a
system enables people of all technical backgrounds to make informed disclosure
decisions. Our ongoing work explores methods to represent disclosure to partic-
ipants to aid informed decision-making.



7.2 Recruitment Process Enhancements

In this paper, we focused on coverage-based recruitment, but there are other
elements that future work will add to the recruitment process as well. In addi-
tion to a participant’s sensing capabilities and their past campaign performance
and participation, we plan to integrate social network membership or external
credentials as factors in recruitment [15]. Furthermore, we will consider a par-
ticipant’s responsiveness, which includes both their willingness and flexibility to
perform specific sensing requests that might deviate from their own objectives
when tasked by the campaign organizer.

Another area to investigate is how the level of parsimony affects the uncer-
tainty of a participant’s qualification for a campaign. This will most affect the
interview stage of the recruitment process where mobility profile information
needs to be shared with the recruitment engine as opposed to results of a query.
If a campaign organizer has coverage constraints based on coarse level mobil-
ity information, it will be less of a disclosure risk for participants but it might
make figuring out which set of participants to recruit much more difficult. On
the other hand, creating coverage requirements that require fine-grained infor-
mation might result in obtaining a more well-suited participant set, but has the
downside of a higher privacy risk. We are interested in designing tools so that
organizers can balance participant disclosure risk and qualification uncertainty.

The current recruiting system has a fairly rigid structure: a campaign is de-
fined and participants are compared against organizer specifications based on
profile information. To make the system more adaptable, a negotiation step,
where participants can specify a level of service to which they are willing to
commit, could be incorporated as well. Also, the system could allow partici-
pants to specify different incentive criteria including not having any specified at
all, being rewarded based on performance, or just obtaining a flat reward for
participation as a whole. Additionally, coverage-based recruitment relies on hav-
ing access to historical mobility information, but this data might not always be
available. Thus, the framework should be able to incorporate manually-specified
availability as well. An approach we will explore is placing confidence weights
on different sources of coverage information. Also, the mobility information that
is specified might range in terms of granularity, so the system would need to
represent availability uncertainty based on the resolution of data provided. Fi-
nally, we are interested in exploring how the recruitment system can operate
during the campaign as a run-time tool for the designer. Thus, exploring the
robustness and accuracy of the mobility analysis technique (employing eigenbe-
haviors) when faced with daily or sub-weekly updates will be a point of analysis
along with exploring how feedback and participant changes affect reaching the
campaign coverage goals.
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